Jordan Normal Form

April 24, 2007

Definition: A Jordan block is a square matrix B whose diagonal entries consist of a single scalar λ, whose superdiagonal entries are all 1, and all of whose other entries vanish. For example:

$$
\begin{pmatrix}
\lambda & 1 & 0 & 0 & \cdots & 0 \\
0 & \lambda & 1 & 0 & \cdots & 0 \\
0 & 0 & \lambda & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{pmatrix}
$$

Theorem: Let T be a linear operator on a finite dimensional vector space V. Suppose that the characteristic polynomial of V splits. Then there exists a basis for T such that $[T]_\beta$ is a direct sum of Jordan blocks.

The first step in the proof of this theorem is to use the direct sum decomposition of V into generalized eigenspaces K_λ. Then it suffices to prove the theorem for the restriction of T to each K_λ. On K_λ, let $S_\lambda := T - \lambda I$. If we can find a basis β of K_λ with respect to which S_λ is a sum of Jordan blocks, then the same will be true for T. On K_λ, there exists an r such that $S_\lambda^r = 0$. Thus it suffices to consider the special case of operators with this property.

Let V be a finite dimensional vector space over a field F. A linear operator $N: V \to V$ is said to be nilpotent if $N^r = 0$ for some positive integer r. Let N be a nilpotent operator on a finite dimensional vector space V. For each i, let R^i be the image of N^i. Each R^i is a linear subspace of V and is N-invariant, and $0 = R^r \subseteq R^{r-1} \subseteq \ldots \subseteq R^1 \subseteq V$. Since N is nilpotent it is not injective (unless $V = 0$). Thus the kernel K of N is not zero and $\dim R^1 = \dim V - \dim K < \dim V$.

Let (v_1, v_2, \cdots, v_s) be a basis for V. Then $[N]_\beta$ is a Jordan block if and only if $N(v_1) = 0$, $N(v_2) = v_1$, and $N(v_i) = v_{i-1}$ for all $i > 1$. This motivates the
following definition.

Definition: An \(N \)-cycle is a sequence \((v_1, v_2, \cdots, v_s) \) of nonzero vectors such that \(N(v_i) = v_{i-1} \) for all \(i > 1 \) and \(N(v_1) = 0 \).

If \((v_1, \cdots, v_s) \) is an \(N \)-cycle, then \(v_1 = N^{s-1}(v_s) \), so \(v_1 \in R^{s-1} \). Conversely, if \(v \in R^{s-1} \), say \(v = R^{s-1}(x) \), then \((R^{s-1}(x), R^{s-2}(x), \cdots, x) \) is an \(N \)-cycle whose initial vector is \(v \). If \(v \) belongs to \(R^s \) but not to \(R^r \), then \(s \) is the length of the longest \(N \)-cycle starting with \(v \).

Definition: An \(N \)-cycle \((v_1, \cdots, v_s) \) is maximal if \(v_1 \not\in R^s \).

It is clear that every nonzero element of the kernel \(K \) of \(N \) is contained in some maximal \(N \)-cycle.

Lemma: Let \((\gamma_1, \gamma_2, \cdots, \gamma_p) \) be a sequence of \(N \)-cycles. Then if the corresponding sequence of initial vectors is linearly independent, so is the concatenated sequence \(\gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_p \).

Proof: Say \(\gamma_i = (v_{i,1}, v_{i,2}, \cdots, v_{i,n_i}) \). Our assumption is that the sequence \((v_{1,1}, v_{2,1}, \cdots, v_{p,1}) \) is linearly independent, and we want to prove that the entire (multi-indexed) sequence \((v_{i,j}) \) is linearly independent. We prove this by induction on the maximum of the \(n_i \)'s. If all the \(n_i \)'s are 1, there is nothing to prove, since we assumed that the sequence of initial vectors is linearly independent. For the induction step, for each \(i \) let \(\gamma_i' \) be the (possibly empty) Jordan cycle obtained by omitting the last term. The induction assumption says that the union of these is linearly independent. Suppose that \(\sum a_{i,j}v_{i,j} = 0 \). Applying \(N \), we deduce that \(\sum a_{i,j}Nv_{i,j} = 0 \), i.e., that \(\sum a_{i,j}v_{i-1,j} = 0 \), where here for each \(j \), \(i \) ranges between 2 and \(n_i \). This is the sum over the corresponding truncated cycles \(\gamma_i' \). The induction assumption says that \(\cup \gamma_i' \) is linearly independent, so \(a_{i,j} = 0 \) for \(i \geq 2 \). Thus the original sum reduces to a linear combination of the initial vectors, which we assumed to be linearly independent. Hence each \(a_{1,j} = 0 \) as well.

Recall that we have linear subspaces \(0 \subseteq R^r \subseteq R^{r-1} \subseteq \cdots \subseteq V \). Consider the corresponding sequence of subspaces of \(K \).

\[
0 = R^r \cap K \subseteq R^{r-1} \cap K \subseteq \cdots \subseteq R^1 \cap K \subseteq K.
\]

We shall say that a basis \(\alpha \) of \(K \) is adapted to \(N \) if for each \(i \), \(\alpha \cap R^i \) is a basis of \(R^i \cap K \). It is clear that such bases always exist: start with a basis for \(R^{r-1} \), extend it to a basis for \(R^{r-2} \), and continue.

Definition: A sequence of maximal \(N \)-cycles \((\gamma_1, \cdots, \gamma_q) \) is full if the corresponding sequence of initial vectors \((v_1, \cdots, v_q) \) is a basis of \(K \) which is adapted to \(N \).
It is clear that full sequences of N-cycles exist: start with a basis for K which is adapted to N, and for each vector v in the basis, find a a maximal cycle starting with v.

Theorem: Every full sequence of maximal N-cycles forms a basis for V.

Proof: Let $(\gamma_1, \gamma_2, \cdots, \gamma_p)$ be a full sequence of maximal N-cycles. By assumption, the corresponding sequence of initial vectors is linearly independent, and hence by the lemma, the concatenation of γ_i’s is linearly independent. It suffices to show that it also spans V. We do this by induction on the smallest r such that $N^r = 0$. If $r = 1$, then $V = K$ and there is nothing to prove, since we assumed that the initial vectors span K. Let $V' := \text{Im}(N)$ and for each i, let γ'_i be γ_i with the last element omitted. In fact, $\gamma'_i = N(\gamma_i)$, with zero omitted. Let N' be the restriction of N to V'. Each γ'_i is contained in V' and is a maximal Jordan cycle for N'. Furthermore, γ'_i is empty only if γ_i has length one, which is true only if its initial (and only) vector does not belong to V'. Thus the sequence of initial vectors of γ'_i contains all the initial vectors of the original sequence which belong to V'. Let p' be the number of nonempty γ'_i’s. It follows that the sequence $(\gamma'_1, \cdots, \gamma'_p)$ is maximal and full for N'. By the induction assumption, it spans V'. Now let W be the span of the all the γ_i’s. Note that by construction, W contains all of K. Furthermore, the image of W under N contains all the γ_i’s and hence all of $V' = \text{Im}(N)$. But then $\dim W = \dim K + \dim \text{Im}(N) = \dim V$, and hence $W = V$.

Remark: For each i, let d_i denote the dimension of R^i and let $h_i := d_{i-1} - d_i$. If α is any basis for K adapted to N, then d_i is the number of elements of α which lie in R^i and so h_i is the number of elements of α which lie in R^{i-1} but not in R^i. Corresponding to each such element there will be a maximal N-cycle of length i. Thus if β is the basis obtained as above, the corresponding matrix $[N]_\beta$ will have exactly h_i Jordan blocks of length i.

Let V and V' be two finite dimensional vector spaces over F, and let T be an operator on V and T' an operator on V'. Then T and T' are sometimes said to be similar if there exists an isomorphism $S:V \rightarrow V'$ such that $T' \circ S = S \circ T$, i.e., $T' = S \circ T \circ S^{-1}$.

Theorem: Suppose that $f_T(x)$ and $f_{T'}(x)$ split. Choose bases β for V and β' for V' such that $A := [T]_\beta$ and $A' := [T']_{\beta'}$ are direct sums of Jordan blocks. Then T and T' are similar if and only if for each $\lambda \in F$ and each integer s, the number of Jordan blocks of A with eigenvalue λ and length s is the same as the corresponding number for A'.
