Math 110, Professor Ogus, Homework due 3/7

(written by Janak Ramakrishnan)

3.3.1. () F,(b) T, () F, () F, () F, () F, (g) T

3.3.3b. (5— 2i)(7i) — (6 +44)(—3 +14) = 35i + 14+ 18 + 12i — 6i + 4 = 36 + 414.

3.3.7. Let A= (ZL Z) Then det(A') = ad — ¢b = ad — be = det(A).

4.2.1. () F, (b) T, (¢) T, () T, (¢) F, (f) F, (g) F, (b) T.

4.2.4.
bl +c1 b2 + co b3 + C3 bl b2 b3 C1 (6]
det a1 +c1 as+co az+cz3 | =det a1 +c1 as+co agz+cg |+det | a1 +c1 as+co
CL1+b1 a2+b2 a3+b3 CL1+b1 a2+b2 CL3+b3 CL1+b1 a2+b2
bl b2 bl b2 b3
det a1 +c1 as+co ag+cz | +det |ai+c1 as+co az+cz |+
bl b2 a1 ag as
C1 (6] C1 (6] C3
det C1 (6] =+ det a1 ag as =
CL1+b1 a2+b2 a3+b3 CL1+b1 a2+b2 a3+b3
bl b2 b3 bl b2 b3 C1 (6] C3 C1 C2 C3
O+det {ar ao az | +det|ci co c3| +0+det|ar as as ]| +det| a1 as as
ay; az as ay az as a; a2 as bl b2 b3
ay; az as ay; az as ay az as
0 + (—1)2 det bl b2 b3 =+ 0 =+ (—1)2 det bl b2 b3 = 2det bl b2 b3
C1 (6] C3 C1 C2 C3 C1 (6] C3
Thus, k£ = 2.
4.2.10.
1 241 0
det [-1 3 2 | = (=) (=1)(2+ )1 — i)+ 3i(1 —4) — 2i(—i) = 4+ 2i
0 -1 1-1

C3
as + C3
as + b3

4.2.25. kA = kIA = (kI)A. Thus, det(kA) = det((kI)A) = det(kI)det(A). Since kI is upper-triangular,
det(kI) is the product of the diagonal entries, which is k™, so det(kA) = k™ det(A).

4.3.1. () F, (b) T, () F, () T, (e) F, () T, (g) F, (h) F.

4.3.5.
-4 -1 4 1
Tr1 = det 8 3 1 = —20, T = det | —8
0 -1 1 2

-4 4
8§ 1
0 1

48,

r3 = det

4.3.21. By performing elementary row operations on C', we can reduce it to the form I or to a matrix

with a zero row. Let the elementary row operations used be F7q, ..

., Er. Let A be m x m. For each



elementary matrix F;, let E. be the n x n elementary matrix corresponding to its action on C in M,
so that if E; switches rows j and [, then E| switches rows j +m and | + m. It is easy to see that
det(E]) = det(E;). Then Ef---E, M is a matrix which is either in the form (g ?) or (g f,),
where P has a zero row. In the second case, det(E1 --- E} M) is 0, since the matrix has a zero row,
and so det(M) = 0, and since det(C) = 0 (as P, C’s RREF, had a zero row), det(M) = det(A4) det(C).
In the first, by exercise 20, det(E] --- E} M) = det(A). Thus, det(M) = det(A)/(det(E]---E})) =
det(A)/(det(E]) - - -det(E})) = det(A)/(det(Er) - - -det(Ey)). Now, since in this case C' is invertible,
we know that det(C') = (det(E1) - --det(Ey)) !, and thus det(M) = det(A) det(C).

4.4.1. (a) T, (b) T, (¢) T, (d) F, (e) F, (f) T, (g) T, (h) F, (i) T, (j) T, (k) T.
4.4.6. See 4.3.21.

4.5.3. Not 3-linear:

20 0 0) 0 0 0
0 0 0 0]=k#25[{0 0 0] =2k.
0O 0 O 0 0 O
4.5.6. Not 3-linear:
1 0 0 1 0 0
5120 0 0)]=1#£2|0 0 0] =2.
0O 0 O 0 0 O

4.5.16. Given any matrix A, we can transform it into a matrix B in RREF. By a previous exercise, we
need only use operations of type 2 and 3 (scaling rows and adding a scalar multiple of one row to
another). By Corollary 1, an operation of type 3 does not alter §, and by n-linearity, an operation
of type 2 scales § by ¢, where ¢ was the scalar used to multiply the row. Thus, let B = E;--- E;A,
where each E; is an elementary matrix of type 2 or 3. Let ¢; = 1 if F; is of type 3, and let ¢; be the
scalar that F; multiplied a row by, if E; is of type 2. Then we know that §(B) = ¢1---¢cxd(A). But
either B has a zero row, in which case it is easy to see, by n-linearity, that §(B) = 0, or B = I. Note
that det(B) = ¢y -+ ¢ det(A). If det(B) = 0, then 6(B) = 0, so §(A) = 0 (and det(A4) = 0), and so
§(A) =0(I)det(A). If det(B) =1, then det(A) = ¢1 - - - ¢k, and so det(A) = 0(B) det(A) = §(I) det(A).
Thus, we are done with k = §(I).



