
Math 110, Professor Ogus, Homework due 3/7

(written by Janak Ramakrishnan)

3.3.1. (a) F, (b) T, (c) F, (d) F, (e) F, (f) F, (g) T

3.3.3b. (5 − 2i)(7i) − (6 + 4i)(−3 + i) = 35i + 14 + 18 + 12i − 6i + 4 = 36 + 41i.

3.3.7. Let A =

(

a b
c d

)

. Then det(At) = ad− cb = ad − bc = det(A).

4.2.1. (a) F, (b) T, (c) T, (d) T, (e) F, (f) F, (g) F, (h) T.

4.2.4.

det





b1 + c1 b2 + c2 b3 + c3

a1 + c1 a2 + c2 a3 + c3

a1 + b1 a2 + b2 a3 + b3



 = det





b1 b2 b3

a1 + c1 a2 + c2 a3 + c3

a1 + b1 a2 + b2 a3 + b3



+det





c1 c2 c3

a1 + c1 a2 + c2 a3 + c3

a1 + b1 a2 + b2 a3 + b3



 =

det





b1 b2 b3

a1 + c1 a2 + c2 a3 + c3

b1 b2 b3



 + det





b1 b2 b3

a1 + c1 a2 + c2 a3 + c3

a1 a2 a3



 +

det





c1 c2 c3

c1 c2 c3

a1 + b1 a2 + b2 a3 + b3



 + det





c1 c2 c3

a1 a2 a3

a1 + b1 a2 + b2 a3 + b3



 =

0 + det





b1 b2 b3

a1 a2 a3

a1 a2 a3



 + det





b1 b2 b3

c1 c2 c3

a1 a2 a3



 + 0 + det





c1 c2 c3

a1 a2 a3

a1 a2 a3



 + det





c1 c2 c3

a1 a2 a3

b1 b2 b3



 =

0 + (−1)2 det





a1 a2 a3

b1 b2 b3

c1 c2 c3



 + 0 + (−1)2 det





a1 a2 a3

b1 b2 b3

c1 c2 c3



 = 2 det





a1 a2 a3

b1 b2 b3

c1 c2 c3



 .

Thus, k = 2.

4.2.10.

det





i 2 + i 0
−1 3 2i
0 −1 1 − i



 = (−1)(−1)(2 + i)(1 − i) + 3i(1 − i) − 2i(−i) = 4 + 2i

4.2.25. kA = kIA = (kI)A. Thus, det(kA) = det((kI)A) = det(kI) det(A). Since kI is upper-triangular,

det(kI) is the product of the diagonal entries, which is kn, so det(kA) = kn det(A).

4.3.1. (a) F, (b) T, (c) F, (d) T, (e) F, (f) T, (g) F, (h) F.

4.3.5.

x1 = det





−4 −1 4
8 3 1
0 −1 1



 = −20, x2 = det





1 −4 4
−8 8 1
2 0 1



 = −48, x3 = det





1 −1 −4
−8 3 8
2 −1 0



 = −8

4.3.21. By performing elementary row operations on C, we can reduce it to the form I or to a matrix

with a zero row. Let the elementary row operations used be E1, . . . , Ek. Let A be m × m. For each
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elementary matrix Ei, let E′

i
be the n × n elementary matrix corresponding to its action on C in M ,

so that if Ei switches rows j and l, then E′

i
switches rows j + m and l + m. It is easy to see that

det(E′

i
) = det(Ei). Then E′

1
· · ·E′

k
M is a matrix which is either in the form

(

A B
O I

)

or

(

A B
O P

)

,

where P has a zero row. In the second case, det(E′

1
· · ·E′

k
M ) is 0, since the matrix has a zero row,

and so det(M ) = 0, and since det(C) = 0 (as P , C’s RREF, had a zero row), det(M ) = det(A) det(C).

In the first, by exercise 20, det(E′

1
· · ·E′

k
M ) = det(A). Thus, det(M ) = det(A)/(det(E′

1
· · ·E′

k
)) =

det(A)/(det(E′

1
) · · ·det(E′

k
)) = det(A)/(det(E1) · · ·det(Ek)). Now, since in this case C is invertible,

we know that det(C) = (det(E1) · · ·det(Ek))−1, and thus det(M ) = det(A) det(C).

4.4.1. (a) T, (b) T, (c) T, (d) F, (e) F, (f) T, (g) T, (h) F, (i) T, (j) T, (k) T.

4.4.6. See 4.3.21.

4.5.3. Not 3-linear:

δ





2(0 0 0)
0 0 0
0 0 0



 = k 6= 2δ





0 0 0
0 0 0
0 0 0



 = 2k.

4.5.6. Not 3-linear:

δ





1 0 0
2(0 0 0)
0 0 0



 = 1 6= 2δ





1 0 0
0 0 0
0 0 0



 = 2.

4.5.16. Given any matrix A, we can transform it into a matrix B in RREF. By a previous exercise, we

need only use operations of type 2 and 3 (scaling rows and adding a scalar multiple of one row to

another). By Corollary 1, an operation of type 3 does not alter δ, and by n-linearity, an operation

of type 2 scales δ by c, where c was the scalar used to multiply the row. Thus, let B = E1 · · ·EkA,

where each Ei is an elementary matrix of type 2 or 3. Let ci = 1 if Ei is of type 3, and let ci be the

scalar that Ei multiplied a row by, if Ei is of type 2. Then we know that δ(B) = c1 · · ·ckδ(A). But

either B has a zero row, in which case it is easy to see, by n-linearity, that δ(B) = 0, or B = I. Note

that det(B) = c1 · · ·ck det(A). If det(B) = 0, then δ(B) = 0, so δ(A) = 0 (and det(A) = 0), and so

δ(A) = δ(I) det(A). If det(B) = 1, then det(A) = c1 · · · ck, and so det(A) = δ(B) det(A) = δ(I) det(A).

Thus, we are done with k = δ(I).
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