
Math 110, Professor Ogus, Homework due 2/28

(written by Janak Ramakrishnan)

3.3.1. (a) F, (b) F, (c) T, (d) F, (e) F, (f) F, (g) T, (h) F.

3.3.2. d. Adding the first two equations together, we note that 3x1 = 0, so x1 = 0. Then from the second

equation, x2 = x3. Thus, a basis is (0, 1, 1) and the dimension is 1.

g. These two equations are clearly linearly independent (one has x1 and the other does not). Sub-

tracting the second equation from the first, we get x1 + x2 + 2x3 = 0. Then the dimension is 2,

since we have 2 equations and 4 unknowns, and (2, 0,−1,−1) and (0, 2,−1,−3) are a basis.

3.3.3. d. Repeating the above argument, we see that for one solution, x1 = 2, and so x3 − x2 = −1,

2(x2 − x3) = 2, so x2 − x3 = 1, and thus x3 = 0, x2 = 1. Therefore, the set of all solutions is

{(x1, x2, x3) ∈ F 3 | x1 = 2, x2 = 1 + t, x3 = t, t ∈ F }, where F is our base field.

g. Again subtracting the second equation from the first, we have x1+x2+2x3 = 0. Thus, (2, 0,−1, 0)

is a solution. Therefore, the set of all solutions is {(x1, x2, x3, x4) ∈ F 4 | x1 = 2t+2, x2 = 2s, x3 =

−1 − t − s, x4 = −t − 3s, t, s ∈ F }.

3.3.6. We have the equations a + b = 1 and 2a − c = 11. The easiest way to solve these is to make

a = 0, b = 1, and c = −11. The set of all solutions to T (~v) = ~0 is spanned by (1,−1, 2). Thus

T−1(1, 11) = {(a, b, c) | a = t, b = 1 − t, c = −11 + 2t, t ∈ R}.

3.3.8. Note that R(T ) has dimension 2, since (1, 0, 1) and (1, 1, 0) are in it, but if (x, y, z) ∈ R(T ), then

x = y + z, so in particular R(T ) 6= R
3. Since {(x, y, z) ∈ R

3 | x = y + z} has dimension 2 and contains

R(T ), it must be R(T ), so we need only check this equation. 1 6= 3 + 2, so (1, 3, 2) /∈ R(T ), but

2 = 1 + 1, so (2, 1, 1) ∈ R(T ).

3.4.1. (a) F, (b) T, (c) T, (d) T, (e) F, (f) T, (g) T.

3.4.2d. We form the augmented matrix and solve:








1 −1 −2 3 −7
2 −1 6 6 −2

−2 1 −4 −3 0
3 −2 9 10 −5









→









1 −1 −2 3 −7
0 1 10 0 12
0 −1 −8 3 −14
0 1 15 1 16









→









1 −1 −2 3 −7
0 1 10 0 12
0 0 2 3 −2
0 0 5 1 4









→









1 −1 −2 3 −7
0 1 10 0 12
0 0 1 1.5 −1
0 0 5 1 4









→









1 −1 −2 3 −7
0 1 10 0 12
0 0 1 3/2 −1
0 0 0 −13/2 9









→









1 −1 −2 3 −7
0 1 10 0 12
0 0 1 3/2 −1
0 0 0 1 −18/13









→









1 −1 −2 3 −7
0 1 10 0 12
0 0 1 0 14/13
0 0 0 1 −18/13









→









1 −1 −2 3 −7
0 1 0 0 16/13
0 0 1 0 14/13
0 0 0 1 −18/13









→









1 0 0 0 7/13
0 1 0 0 16/13
0 0 1 0 14/13
0 0 0 1 −18/13









Thus, the solution is (7/13, 16/13, 14/13,−18/13).
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3.4.5. Let the rows of the RREF of A be v1, v2, v3. Since each row of A is a linear combination of the rows

in the RREF of A, we know that the first row of A must equal v1 + v3. Thus, the third coordinate is

2. The second row of A must be −v1 − v2 − 2v3, so the third coordinate is −2 + 5 = 3. Finally, the

third row of A must be 3v1 + v2, so the third coordinate is 6.

3.4.13. Let v1 = (1, 0, 1, 1, 1, 0) and v2 = (0, 2, 1, 1, 0, 0), so S = {v1, v2}. For part a, it is clear that v1 and

v2 are linearly independent (v1 has a nonzero first coordinate). Since 1− 0 + 0 · 1 + 2 · 1− 3 · 1 + 0 = 0

and 2 · 1− 0− 1 + 3 · 1− 4 · 1 + 4 · 0 = 0, v1 ∈ V , and likewise, 2 · 0− 2 + 0 · 1 + 2 · 1− 3 · 0 + 0 = 0 and

2 · 0 − 2 + −1 + 3 · 1 − 4 · 0 + 4 · 0 = 0 show that v2 ∈ V . It is easy to verify that V is 4-dimensional.

The vectors v3 = (0, 0,−5, 1, 0,−2) and v4 = (0, 0, 1, 3, 2, 0) complete S to a basis – it is easy to check

that they lie in V , so we need only check that {v1, v2, v3, v4} is a linearly independent set. But v3 is

clearly independent from {v1, v2}, since its last coordinate is nonzero, and both v1 and v2 have zero last

coordinate. v4 is independent from v1, v2, v3 because any linear combination of v1, v2, v3 with nonzero

coefficient for v1 must have nonzero first coordinate, and likewise for v2. Thus, we need only consider

multiples of v3, but v3 and v4 are easily linearly independent.

3.4.15. Let B and B′ be two matrices in RREF, with B,B′ equal to A in RREF. We know from the theorem

that B and B′ are m × n, with r nonzero rows, where r = Rank(A), or else there is no way for B′ to

be the RREF of A. We will show B = B′.

First we show that for each i ≤ n, if we take the first j such that either bj = ei or b′j = ei, then

bj = b′j = ei. We show this by contradiction, so assume that it is not true for some i. We can choose

the least such i. WLOG, we can assume that bj = ei – else we can switch B and B′. For B′ to be in

RREF, since ei is not in the first j columns of B′, b′j cannot have any nonzero component of ei, . . . , er.

Then it is easy to see that bj is a linear combination of e1, . . . , ei−1, say d′

1e1 + . . . + d′

i−1ei−1. If we

let jk (for k < i) be the first column at which bjk
= b′jk

= ek, then by Theorem 3.16(d), this means

that aj = d′

1aj1 + . . . d′

ji−1
aji−1

. But now consider B and Theorem 3.16(c): we can let ji = j, and so

we know that aj is linearly independent from aj1 , . . . , aji−1
, which is a contradiction. Thus, there is no

such i – for each i and the first j such that bj = ej, b′j = ej as well.

Thus, we can choose j1, . . . , jr as in Theorem 3.16 to be the same for B and B′. Now we note that the

converse of Theorem 3.16(d) is also true, since there is only one possible representation of each column

of A in terms of aj1 , . . . , ajr
, as they are linearly independent, by Theorem 3.16(c). Thus, column k of

A determines column k of B and of B′, showing that B = B′.
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