Math 110, Professor Ogus, Homework due 2/21
(written by Janak Ramakrishnan)

2.6.1.(a) F
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Yes: differentiation is linear, so this function is linear, and it is a map from V to F.
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No: a map to V, not F.
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Yes: linear, and a map to F.
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No: a map to V, not F.
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Yes: integration is linear, and it is a map to F'.
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Yes: linear, and a map to F.

fl(l,O, 1) = 1, SO fl(el) + fl(eg) =1. fl(el) + 2f1(62) + fl(eg) =0. fl(eg) =0. ThllS7 fl(el) =1
and fi(es) = —1/2, 50 fi(x,y,2) =x —y/2.
faler) + fales) = 0, fa(er) + 2f2(e2) + fales) = 1, fa(es) = 0. Thus, fa(e;) = 0, and so
fQ(eQ) = _1/27 SO fz(x,y,z) = y/2
fg(el) + fg(eg) =0, fg(el) + 2f3(62) + fg(eg) =0, fg(eg) = 1. Thus, fg(el) = -1, fg(ez) =0, so
fa(x,y,2) = —x + 2.
(b) Since 3 is the standard basis, it is easy to write our functions: fi(ag + a12 + az2?) = ag, f2(ao +
a17 + asx?) = a1, f3(ag + a1 + axx?) = as.

2.6.3. (a

2.6.5. Since we know that V* is two-dimensional, all we need do is show that f; and fa are not linearly
dependent, i.e. that f5 is not a scalar multiple of fi (it is clear that f; is not 0, which is the only other
possibility). Let ¢ be any scalar. If ¢ # 2, let p(x) = 1. Then fo(p) =2 and f1(p) = ¢, so fo # cf1. If
¢ =2, let p(x) = 2. Then fo(p) =2, but fi(p) =2*1/2=1,s0 fo # c¢f1. Thus, for no cis fo = cfi,
and so they are linearly independent, and thus a basis.

To find a basis for which {f1, f2} is the dual basis, we let {a + bx,c+ dz} be the desired basis. Then,
since fi(a + bx) = 1, we know that a +b/2 = 1. fa(a + bx) = 0, so 2a + 2b = 0. Thus, b = —a, and
a—a/2=1,s0a=2,b=—2. By the same method, ¢+ d/2 =0 and 2c+2d = 1, so d/2 = 1 and thus
d =2,c= —1. Thus, our basis is {2 — 2z, —1 + 2z}.

2.6.11. To show that two functions are equal, we show they are equal on every element in their domains.
Let v € V be any vector. Then (12T)(v) and (T*1;)(v) are both functions from W* to F. To show
that these are equal, again, we show they are equal on every element in their domains. Let g be any
element of W*. By definition of 19, (12T (v))(g) = g(T(v)). By definition of T, (T (v))(g) =
(1 (v))(Tt(g)) = g(T(v)). Thus, these two are equal, and so (12T )(v) and (T )(v) are equal. Since
this is true for any v, ¥»T and T4, are equal.

2.6.13.(a) S° contains the 0 vector (since the 0 vector is certainly 0 on everything in S). If f,g € S, then
for any x € S, (f +¢9)(z) = f(z) + g(x) =0, so f+ g € S. Scalar multiplication is the same
argument.
(b) Let « be a basis of W. Starting with {x} U W, we complete V' to a basis. Then define f(z) =1,
fly)=0fory e B, y # x. It is easy to check that f € V*, i.e. that f is linear and maps to F. For
w € W, w is a linear combination of elements in «, but we have defined f to be 0 on every element
of a, so f(w) =0, and thus f € S°.



(¢) We show both directions of the equality. Let g € (S°)°. By Theorem 2.26, g is the image under ¢
of some x € V. By the previous part, if z ¢ Span(S), then there is some f € S° such that f(z) # 0.
Thus, if 2 ¢ Span(S), ¥(z)(f) # 0, and so ¥(z) ¢ (SY)°, since ¢(z) is not 0 on f, which is an
element of S°. Therefore, since g € (S°)°, z € Span(S). But since ¢ is a linear map, if z € Span(9),
Y(x) € Span(1(S)). This shows that (S°)° C Span(y(S)).

For the other direction, let g € Span(t(S)). Again by linearity of ¢, we can actually assume that
g = ¥(x), where 2 € Span(S). Then, for any element of S°, h, g(h) = ¥ (x)h = h(x) = 0, since h is
0 on S, and h is linear. Thus, ¢ (z) € (5°)°, so g € (S°)°, and so Span((S)) C (S°)°.

2.6.14. Following the hint, we have a basis, {1,...,2;} of W (with k£ = dim(W)), 8 = {z1,...,2,} an
extension to a basis of V' (with n = dim(V)), and {fi,..., fn} the dual basis in W*, and we wish to
show that {fri1,...,fn} is a basis of Wy. Clearly, Span({fi+1,...,fn}) C Wp. Let g € Wy be any
vector. We can write g as Zle aifi—i—Z?:kH b;f;. Then, examining g(x1), it is easy to see that a1 = 0.
We can do this for each ¢ < k, and get a; = a3 = --- = ap, = 0. Thus, g € Span({fi+1,..., fn}), and
SO {fet1,---»fn} span WO, Since they were constructed to be linearly independent, they are a basis,
and so dim(W?) = n — k. Thus, dim(W) + dim(W°) =k +n — k = n = dim(V).

2.6.15. We show both directions of the equality. If g € N(T"), then g(Tv) = 0 for every v € V. Thus, for
every w € R(T), g(w) =0, and so g € (R(T))°, so N(T*) C (R(T))".

For the other direction, let g € (R(T))°. Then for every w € R(T), g(w) = 0. Thus, for every v € V,
g(Tv) =0, and so T'g =0, so g € N(T?).

2.6.16. We first need to show the simple fact that Ly = L 4¢. This is true since L}, = Lipty = Lipage = La
(these steps are by Theorem 2.25 and Theorem 2.15a). Now this question is easy. Let n = dim(V).
Then Rank(L,) = dim(R(La)) = n — dim((R(L4))?) = n — dim(N(LY)) = n — dim(N(La¢)) =
dun(R(LAt))
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3.1.2. Adding —2 times column 1 to column 2 transforms A into B. Adding -1 times row 1 to row 2
transforms B into C'. Multiplying row 2 by —1/2, then subtracting row 1 from row 3, then adding 3
times row 2 from row 1, then subtracting row 3 from row 2, then subtracting 3 times row 3 from row
1 transforms C into I3.

3.1.3c. Since our matrix is obtained by adding —2 times the first row to the third row, we know that it is

1 00 1 00
0 1 O] times I3. Since [ 0 1 0] is the corresponding inverse elementary operation, and thus
-2 0 1 2 01

the inverse.

3.1.9. To switch row ¢ and row 7, add row ¢ to row j, then add —1 times the resulting row j to row ¢, then
add the resulting row i to row j, then multiply row ¢ by —1.

3.2.1.(a) F
(b) F
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3.2.2eg. Fore, add 1/6 column 3 to 1/2 column 5 to get column 4, and multiply column 5 by 2 to get column

2, so the rank is at most 3. Looking at the last 3 rows, it is clear that they are linearly independent,
so the rank is 3. For g, by inspection on the columns, it is clear that the rank is 1.
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3.2.3. The rank is the dimension of the span of the columns. If the dimension is 0, then every column
vector is in the span of the empty basis, and thus is the zero vector. Since every column vector is 0,
the matrix is the 0 matrix.

3.2.4a. Subtracting row 1 from row 3, then subtracting column 2 from column 1, then switching column 1
and column 2, then subtracting the appropriate multiples from the third and fourth columns to zero

1 0 00
them, gives the matrix [0 1 0 0 |, showing that the rank is 2.
0 0 0O
3.2.5c. The rank is 2:
1 2 111 0 O 1 2 1 1 00 10 =5 3 -2 0
13 4|01 0 ]—-1]01 3/]-1 1 0] —=101 3|1 -1 1 0 |-
23 -1|0 0 1 2 3 -1 0 01 2 3 -1 0 01
1 0 =5 3 -2 0 10 =5 3 -2 0
0 1 3|-1 1 0)—101 3|-1 10
03 9(-6 4 1 00 O0f-3 11

3.2.6a. T(1) = —1, T(x) = 2—x, and T(2?) = 2+4x—22. These are linearly independent, so T is invertible.
Tts inverse takes 1 to —1, = to —z — 2, and 22 to —z? — 4z — 10.

3.2.7. We note that to reach I3, we first subtract the second row from the first, divide the first by 2,
subtract the second row from the third, subtract the first row from the third, then the third from the
second, then switch the first and second. Thus, this matrix is the product of the inverses of the above

operations:
1 2 1 1 1 0 2 0 0 1 0 0 1 0 0 1 00 0 1 0
1 0 1|=10 1 Ofx|0 1 O]x|0 1 O]x{|0 1 OJx|0 1 1]x|1 0 O
1 1 2 0 01 0 01 01 1 1 01 0 0 1 0 0 1



