
Math 110, Professor Ogus, Homework due 2/21(written by Janak Ramakrishnan)2.6.1.(a) F(b) T(c) T(d) T(e) F(f) T(g) T(h) F2.6.2.(a) Yes: di�erentiation is linear, so this function is linear, and it is a map from V to F .(b) No: a map to V , not F .(c) Yes: linear, and a map to F .(d) No: a map to V , not F .(e) Yes: integration is linear, and it is a map to F .(f) Yes: linear, and a map to F .2.6.3.(a) f1(1, 0, 1) = 1, so f1(e1) + f1(e3) = 1. f1(e1) + 2f1(e2) + f1(e3) = 0. f1(e3) = 0. Thus, f1(e1) = 1and f1(e2) = −1/2, so f1(x, y, z) = x− y/2.
f2(e1) + f2(e3) = 0, f2(e1) + 2f2(e2) + f2(e3) = 1, f2(e3) = 0. Thus, f2(e1) = 0, and so

f2(e2) = −1/2, so f2(x, y, z) = y/2.
f3(e1) + f3(e3) = 0, f3(e1) + 2f3(e2) + f3(e3) = 0, f3(e3) = 1. Thus, f3(e1) = −1, f3(e2) = 0, so

f3(x, y, z) = −x+ z.(b) Since β is the standard basis, it is easy to write our functions: f1(a0 + a1x+ a2x
2) = a0, f2(a0 +

a1x+ a2x
2) = a1, f3(a0 + a1x+ a2x

2) = a2.2.6.5. Since we know that V ∗ is two-dimensional, all we need do is show that f1 and f2 are not linearlydependent, i.e. that f2 is not a scalar multiple of f1 (it is clear that f1 is not 0, which is the only otherpossibility). Let c be any scalar. If c 6= 2, let p(x) = 1. Then f2(p) = 2 and f1(p) = c, so f2 6= cf1. If
c = 2, let p(x) = x. Then f2(p) = 2, but f1(p) = 2 ∗ 1/2 = 1, so f2 6= cf1. Thus, for no c is f2 = cf1,and so they are linearly independent, and thus a basis.To �nd a basis for which {f1, f2} is the dual basis, we let {a+ bx, c+ dx} be the desired basis. Then,since f1(a + bx) = 1, we know that a + b/2 = 1. f2(a + bx) = 0, so 2a + 2b = 0. Thus, b = −a, and
a− a/2 = 1, so a = 2, b = −2. By the same method, c+ d/2 = 0 and 2c+ 2d = 1, so d/2 = 1 and thus
d = 2, c = −1. Thus, our basis is {2 − 2x,−1 + 2x}.2.6.11. To show that two functions are equal, we show they are equal on every element in their domains.Let v ∈ V be any vector. Then (ψ2T )(v) and (T ttψ1)(v) are both functions from W ∗ to F . To showthat these are equal, again, we show they are equal on every element in their domains. Let g be anyelement of W ∗. By de�nition of ψ2, (ψ2T (v))(g) = g(T (v)). By de�nition of T tt, (T ttψ1(v))(g) =
(ψ1(v))(T

t(g)) = g(T (v)). Thus, these two are equal, and so (ψ2T )(v) and (T ttψ1)(v) are equal. Sincethis is true for any v, ψ2T and T ttψ1 are equal.2.6.13.(a) S0 contains the 0 vector (since the 0 vector is certainly 0 on everything in S). If f, g ∈ S0, thenfor any x ∈ S, (f + g)(x) = f(x) + g(x) = 0, so f + g ∈ S. Scalar multiplication is the sameargument.(b) Let α be a basis of W . Starting with {x} ∪W , we complete V to a basis. Then de�ne f(x) = 1,
f(y) = 0 for y ∈ β, y 6= x. It is easy to check that f ∈ V ∗, i.e. that f is linear and maps to F . For
w ∈W , w is a linear combination of elements in α, but we have de�ned f to be 0 on every elementof α, so f(w) = 0, and thus f ∈ S0. 1



(c) We show both directions of the equality. Let g ∈ (S0)0. By Theorem 2.26, g is the image under ψof some x ∈ V . By the previous part, if x /∈ Span(S), then there is some f ∈ S0 such that f(x) 6= 0.Thus, if x /∈ Span(S), ψ(x)(f) 6= 0, and so ψ(x) /∈ (S0)0, since ψ(x) is not 0 on f , which is anelement of S0. Therefore, since g ∈ (S0)0, x ∈ Span(S). But since ψ is a linear map, if x ∈ Span(S),
ψ(x) ∈ Span(ψ(S)). This shows that (S0)0 ⊆ Span(ψ(S)).For the other direction, let g ∈ Span(ψ(S)). Again by linearity of ψ, we can actually assume that
g = ψ(x), where x ∈ Span(S). Then, for any element of S0, h, g(h) = ψ(x)h = h(x) = 0, since h is
0 on S, and h is linear. Thus, ψ(x) ∈ (S0)0, so g ∈ (S0)0, and so Span(ψ(S)) ⊆ (S0)0.2.6.14. Following the hint, we have a basis, {x1, . . . , xk} of W (with k = dim(W )), β = {x1, . . . , xn} anextension to a basis of V (with n = dim(V )), and {f1, . . . , fn} the dual basis in W ∗, and we wish toshow that {fk+1, . . . , fn} is a basis of W0. Clearly, Span({fk+1, . . . , fn}) ⊆ W0. Let g ∈ W0 be anyvector. We can write g as ∑k

i=1 aifi+
∑n

i=k+1 bifi. Then, examining g(x1), it is easy to see that a1 = 0.We can do this for each i ≤ k, and get a1 = a2 = · · · = ak = 0. Thus, g ∈ Span({fk+1, . . . , fn}), andso {fk+1, . . . , fn} span W 0. Since they were constructed to be linearly independent, they are a basis,and so dim(W 0) = n− k. Thus, dim(W ) + dim(W 0) = k + n− k = n = dim(V ).2.6.15. We show both directions of the equality. If g ∈ N(T t), then g(Tv) = 0 for every v ∈ V . Thus, forevery w ∈ R(T ), g(w) = 0, and so g ∈ (R(T ))0, so N(T t) ⊆ (R(T ))0.For the other direction, let g ∈ (R(T ))0. Then for every w ∈ R(T ), g(w) = 0. Thus, for every v ∈ V ,
g(Tv) = 0, and so T tg = 0, so g ∈ N(T t).2.6.16. We �rst need to show the simple fact that Lt

A
= LAt . This is true since Lt

A
= L[Lt

A
] = L[LA]t = LAt(these steps are by Theorem 2.25 and Theorem 2.15a). Now this question is easy. Let n = dim(V ).Then Rank(LA) = dim(R(LA)) = n − dim((R(LA))0) = n − dim(N(Lt

A
)) = n − dim(N(LAt)) =

dim(R(LAt)).3.1.1.(a) T(b) F(c) T(d) F(e) T(f) F(g) T(h) F(i) T3.1.2. Adding −2 times column 1 to column 2 transforms A into B. Adding -1 times row 1 to row 2transforms B into C. Multiplying row 2 by −1/2, then subtracting row 1 from row 3, then adding 3times row 2 from row 1, then subtracting row 3 from row 2, then subtracting 3 times row 3 from row1 transforms C into I3.3.1.3c. Since our matrix is obtained by adding −2 times the �rst row to the third row, we know that it is




1 0 0
0 1 0
−2 0 1



 times I3. Since 



1 0 0
0 1 0
2 0 1



 is the corresponding inverse elementary operation, and thusthe inverse.3.1.9. To switch row i and row j, add row i to row j, then add −1 times the resulting row j to row i, thenadd the resulting row i to row j, then multiply row i by −1.3.2.1.(a) F(b) F 2



(c) T(d) T(e) F(f) T(g) T(h) T(i) T3.2.2eg. For e, add 1/6 column 3 to 1/2 column 5 to get column 4, and multiply column 5 by 2 to get column2, so the rank is at most 3. Looking at the last 3 rows, it is clear that they are linearly independent,so the rank is 3. For g, by inspection on the columns, it is clear that the rank is 1.3.2.3. The rank is the dimension of the span of the columns. If the dimension is 0, then every columnvector is in the span of the empty basis, and thus is the zero vector. Since every column vector is 0,the matrix is the 0 matrix.3.2.4a. Subtracting row 1 from row 3, then subtracting column 2 from column 1, then switching column 1and column 2, then subtracting the appropriate multiples from the third and fourth columns to zerothem, gives the matrix 



1 0 0 0
0 1 0 0
0 0 0 0



, showing that the rank is 2.3.2.5c. The rank is 2:




1 2 1 1 0 0
1 3 4 0 1 0
2 3 −1 0 0 1



 →





1 2 1 1 0 0
0 1 3 −1 1 0
2 3 −1 0 0 1



 →





1 0 −5 3 −2 0
0 1 3 −1 1 0
2 3 −1 0 0 1



 →





1 0 −5 3 −2 0
0 1 3 −1 1 0
0 3 9 −6 4 1



 →





1 0 −5 3 −2 0
0 1 3 −1 1 0
0 0 0 −3 1 1



3.2.6a. T (1) = −1, T (x) = 2−x, and T (x2) = 2+4x−x2. These are linearly independent, so T is invertible.Its inverse takes 1 to −1, x to −x− 2, and x2 to −x2 − 4x− 10.3.2.7. We note that to reach I3, we �rst subtract the second row from the �rst, divide the �rst by 2,subtract the second row from the third, subtract the �rst row from the third, then the third from thesecond, then switch the �rst and second. Thus, this matrix is the product of the inverses of the aboveoperations:




1 2 1
1 0 1
1 1 2



 =





1 1 0
0 1 0
0 0 1



 ×





2 0 0
0 1 0
0 0 1



 ×





1 0 0
0 1 0
0 1 1



 ×





1 0 0
0 1 0
1 0 1



 ×





1 0 0
0 1 1
0 0 1



 ×





0 1 0
1 0 0
0 0 1




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