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Section 2.3: 1, 3, 8, 9, 11, 15; Section 2.4: 1, 2a,c,f , 5, 10; Section 2.5: 1, 2ac, 6, 10, 11

3.1 (a) False.

(b) True.

(c) False.

(d) True.

(e) False.

(f) False.

(g) True.

(h) False.

(i) True.

(j) True.

3.3 [T ]β =

 2 3 0
0 3 6
0 0 4

 , [U ]γβ =

 1 1 0
0 0 1
1 −1 0

 , [UT ]γβ =

 2 6 6
0 0 4
2 0 −6

 ,

3.8 Theorem 2.10 Let V be a vector space. Let T,U1, U2 ∈ L(V ). Then

(a) T (U1 + U2) = TU1 + TU2

Proof: T (U1 + U2)(v) = T (U1(v) + U2(v)) = TU1(v) + TU2(v).

(b) T (U1U2) = (TU1)U2

Proof: T (U1U2)(v) = T ((U1U2)(v)) = T (U1(U2(v))) = (TU1)(U2(v)) = (TU1)(U2)(v).

(c) TI = IT = T

Proof: TI(v) = T (I(v)) = T (v) = I(T (v)) = IT (v)

(d) a(U1U2) = (aU1)(U2) = U1(aU2) for all scalars a.
Proof: a(U1U2)(v) = a(U1(U2(v))) = U1(aU2(v)).

General statement: Let V,W,X, Y be vector spaces over F and S, S′ : V → W,T, T ′ : W → X, U :
X → Y linear transformations. Then

(a) T (S + S′) = TS + TS′ and (T + T ′)S = TS + T ′S

(b) (UT )S = U(TS)

(c) SIV = IW S = S

(d) a(TS) = (aT )S = T (aS) for all a ∈ F .

These can be proved in a similar way to the statements in theorem 2.10.
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3.9 Define U(x, y) = (x, 0) and T (x, y) = (0, x + y). Then UT (a, b) = U(0, a + b) = (0, 0) for any (a, b),
but TU(a, b) = T (a, 0) = (a, 0) 6= 0V for a 6= 0. By taking the matrix representations of U and T

with respect to the standard basis we get
(

1 0
0 0

)
, and

(
0 0
1 1

)
respectively. One can check that

these matrices satisfy the desired properties.

3.11 Let V be a vector space and T : V → V be linear. Prove T 2 = T0 ⇐⇒ R(T ) ⊆ N(T ).

⇒ Take v ∈ V and consider T 2(v) = T (T (v)). Since T (v) ∈ R(T ), by assumption, T (v) ∈ N(T ).
Therefore T 2(v) = T (T (v)) = 0 for all v ∈ V .

⇐ Take winR(T ). By definition of the range w = T (v) for some v ∈ V . Then T (w) = T (T (v)) =
T 2(v) = T0(v) = 0, so w ∈ N(T ). Thus R(T ) ⊆ N(T ).

3.15 Let M be an m × n matrix, and A be a n × p matrix. Let Aj denote the jth column of A and
similarly for (MA)j . Assume Aj = c1A1 + · · · + cnAn (where cj = 0) for some j. Thus we have
A(k,j) = c1A(k,1) + · · ·+ cnA(k,n) for all k. By the formula for matrix multiplcation,we have

(MA)(i,j) =
n∑

k=1

(M(i,k)A(k,j)) =
n∑

k=1

(M(ik)(c1A(k,1) + · · ·+ cnA(k,n))

=
n∑

l=1

cl

n∑
k=1

M(i,k)A(k,l) =
n∑

l=1

cl(MA)(i,l).

Thus, the jth column of MA is also a linear combination of the other columns with the same corre-
sponding coefficients.

4.1 (a) False.
(b) True.
(c) False.
(d) False.
(e) True.
(f) False.
(g) True.
(h) True.
(i) True.

4.2 (a) T is not invertible. The dimension of the codomain is larger than the dimension of the domain,
so T cannot be onto.

(c) T is invertible. One can check that T is both one-to-one and onto.
(f) T is invertible. One can check that T is both one-to-one and onto.

4.5 Let A be invertible. Prove that At is invertible and (At)−1 = (A−1)t.

Proof: If A is invertible then (A−1)t exists. Consider At(A−1)t = ((A−1)A)t = It
n = In. Similarly,

(A−1)tAt = (A(A−1))t = It
n = In. Therefore we get the desired result.

4.10 (a) By exercise (9), if A and B are n × n and AB is invertible, then A and B are invertible. In this
situation, AB = In which is an invertible matrix. Therefore A and B are invertible.

(b) Since B is invertible, the B−1 exists. By multiplying both sides of the equation on the right by
B−1 we get (AB)B−1 = A(BB−1) = A(In) = A = In(B−1) = B−1.

(c) Let V,W be n dimensional vector spaces, T : V → W , U : W → V linear transformations. If
UT = IV , then T and U are invertible.
Proof: If UT = IV , then R(U) = V and U is onto. Thus, by the Rank-Nullity Theorem, we see
that U is one-to-one. Therefore U is invertible. By the same argument as in (b), we can show that
U−1 = T , so T in invertible as well.
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5.1 (a) False.

(b) True.

(c) True.

(d) False.

(e) True.

5.2 (a) Q =
(

a1 b1

a2 b2

)
(c) Q =

(
3 −1
5 −2

)

5.6 (a) [LA]β =
(

6 11
−2 −4

)
, Q =

(
1 1
1 2

)
,

(b) [LA]β =
(

3 0
0 −1

)
, Q =

(
1 1
1 −1

)
,

(c) [LA]β =

 2 2 2
−2 −3 −4
1 1 2

 , Q =

 1 1 1
1 0 1
1 1 2

 ,

(d) [LA]β =

 6 0 0
0 12 0
0 0 18

 , Q =

 1 1 1
1 −1 1
−2 0 1

 ,

5.10 Assume A and B are similar n × n matrices, i.e. there exists an invertible matrix Q such that A =
Q−1BQ. By 2.3, exercise 13, and this identity, tr(A) = tr((Q−1B)Q) = tr(Q((Q−1B)) = tr(B).

5.11 Let V be a finite-dimensional vector space with ordered bases α, β, and γ.

(a) Prove that if Q and R are the change of coordinate matrices that change α coordinates into β
coordinates and β coordinates into γ coordinates, respectively, then RQ is the change of coordinate
matrix that changes α coordinates into γ coordinates.
Proof: RQ = [IV ]γβ [IV ]βα = [IV IV ]γα by theorem 2.11. But [IV IV ]γα = [IV ]γα, the change of coordi-
nate matrix from α coordinates to γ coordinates.

(b) Prove that if Q changes α coordinates into β coordinates, then Q−1 changes β coordinates into α
coordinates.
Proof: By theorem 2.11, [IV ]βα[IV ]αβ = [IV ]αα = In. Since Q = [IV ]βα, by substituting and solving,
we get Q−1 = [IV ]αβ


