Assignment 5

MATH110
February 13, 2007

Section 2.3: 1, 3, 8, 9, 11, 15; Section 2.4: 1, 2a,c,f, 5, 10; Section 2.5: 1, 2ac, 6, 10, 11
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3.8 Theorem 2.10 Let V be a vector space. Let T,Uy,Us € L(V). Then

—6

(a) T(Uy +Us) =TU; + TU,
Proof: T(Uy + Uz)(v) =T (Ur(v) + Uz (v)) = TU; (v) + TUz(v).
(b) T(U,Us) = (TU;)Us
Proof: T(U1Uz)(v) = T((U1U2)(v)) = T(U1(U2(v))) = (TU1)(Uz(v)) = (TU1)(Uz)(v).
() TI=IT=T
Proof: TI(v) =T(I(v)) =T(v) =I(T(v)) =IT(v)
(d) a(UrUz) = (aUy)(Uz) = Uy (aUs) for all scalars a.
Proof: a(U1Us)(v) = a(Uy(Uz(v))) = Ui (aUs(v)).
General statement: Let V, W, X, Y be vector spaces over F' and S,S" : V — W, T, 7' : W — X,U :
X — Y linear transformations. Then
(a) T(S+S5)=TS+TS and (T+T")S=TS+T'S
(b) (UT)S =U(TS)
(¢c) SIy =IwS =S5
(d) a(TS) = (aT)S =T(aS) for all a € F.

These can be proved in a similar way to the statements in theorem 2.10.
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3.9 Define U(z,y) = (z,0) and T(x,y) = (0,2 4+ y). Then UT(a,b) = U(0,a + b) = (0,0) for any (a,b),
but TU(a,b) = T(a,0) = (a,0) # Oy for a # 0. By taking the matrix representations of U and T

with respect to the standard basis we get < (1) 8 ) , and < (1) (1) > respectively. One can check that

these matrices satisfy the desired properties.

3.11 Let V be a vector space and T': V — V be linear. Prove T? =T, <= R(T) C N(T).
= Take v € V and consider T?(v) = T(T(v)). Since T'(v) € R(T), by assumption, T(v) € N(T).
Therefore T2(v) = T(T'(v)) =0 for all v € V.
< Take winR(T'). By definition of the range w = T'(v) for some v € V. Then T(w) = T(T(v)) =
T?%(v) = To(v) =0, so w € N(T). Thus R(T) C N(T).

3.15 Let M be an m x n matrix, and A be a n x p matrix. Let A; denote the j* column of A and
similarly for (M A);. Assume A; = 1A + -+ + ¢, A, (where ¢; = 0) for some j. Thus we have
Ak,jy = 1A,y + - + e A(k,n for all k. By the formula for matrix multiplcation,we have

(MA)j = Z(M(z ) Ak,5)) Z My (c1Agay + -+ cnApn))
k=1
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Thus, the j** column of M A is also a linear combination of the other columns with the same corre-
sponding coefficients.

4.1 (a) False.

4.2 (a) T is not invertible. The dimension of the codomain is larger than the dimension of the domain,
so T cannot be onto.

(c¢) T is invertible. One can check that T is both one-to-one and onto.

(f) T is invertible. One can check that T is both one-to-one and onto.

4.5 Let A be invertible. Prove that A’ is invertible and (A?)~1 = (A1)’

Proof: 1If A is invertible then (A™1)* exists. Consider A'(A™1)! = ((A~1)A)! = I} = I,,. Similarly,
(A~1)tAt = (A(A7Y))t = It = I,,. Therefore we get the desired result.

4.10 (a) By exercise (9), if A and B are n x n and AB is invertible, then A and B are invertible. In this

situation, AB = I,, which is an invertible matrix. Therefore A and B are invertible.

(b) Since B is invertible, the B~! exists. By multiplying both sides of the equation on the right by
B! we get (AB)B~! = A(BB~') = A(I,) = A=I,(B~') = B~

(c) Let V,W be n dimensional vector spaces, T : V. — W, U : W — V linear transformations. If
UT = Iy, then T and U are invertible.
Proof: Mt UT = Iy, then R(U) =V and U is onto. Thus, by the Rank-Nullity Theorem, we see
that U is one-to-one. Therefore U is invertible. By the same argument as in (b), we can show that
U~! =T, so T in invertible as well.
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5.1 (a) False
(b) True
(¢) True
(d) False
(e) True
5.2 (a) :(Z; Z;)
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5.10 Assume A and B are similar n X n matrices, i.e. there exists an invertible matrix () such that A =
Q~'BQ. By 2.3, exercise 13, and this identity, tr(A) = tr((Q~'B)Q) = tr(Q((Q~'B)) = tr(B).

5.11 Let V be a finite-dimensional vector space with ordered bases «, (3, and ~.

(a) Prove that if @ and R are the change of coordinate matrices that change a coordinates into (3
coordinates and 3 coordinates into v coordinates, respectively, then RQ is the change of coordinate
matrix that changes a coordinates into  coordinates.

Proof: RQ = [Iv]g[lv]g = [IvIv]? by theorem 2.11. But [IyIv]) = [Iy]Y, the change of coordi-
nate matrix from « coordinates to y coordinates.

(b) Prove that if Q changes a coordinates into 3 coordinates, then Q! changes 3 coordinates into «
coordinates.
Proof: By theorem 2.11, [Iv]g[Iv]g = [Iy]® = I,,. Since Q = [Iy]2, by substituting and solving,
we get Q1 = [I]3




