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6.23 (a) v ∈ Span({v1, · · · , vk}) ⇐⇒ dim(W1) = dim(W2)

(b) If dim(W1) 6= dim(W2), then dim(W1) + 1 = dim(W2)
Proof: Since we have only added one more vector to a generating set of W2, the dimension can
at most increase by one, but we’ve assumed they aren’t equal, so it must increase by at least one.
Therefore dim(W2) = dim(W1) + 1.

6.26 The dimension of the subspace W = {f ∈ Pn(R) : f(a) = 0} is n. We prove this by computing a basis.

A basis for this space is {xi − ai : 1 ≤ i ≤ n}. One can check that this set is linearly independent, has
n elements, and the span is contained inside W . If W was bigger, then W would have dimension n+1
and be equal to Pn(R), but W is strictly contained in Pn(R). Therefore this set is a basis for W .

6.28 If {v1, . . . , vn} is a basis for V over C, then {v1, iv1, v2, iv2, . . . , vn, ivn} is a basis for V over (R).

Proof: Linearly Independent. Say a1v1 + b1iv1 + · · ·+ anvn + anivn = 0. Then by regrouping we get
(a1 + ib1)v1 + · · · + (an + ibn)vn = 0, but v1, . . . , vn are linearly independent over C so ai + ibi = 0
which implies that ai = bi = 0.
Generate. Take any v ∈ V . Over C, we can write this as v = (a1 + ib1)v1 + · · ·+ (an + ibn)vn for some
ai + ibi ∈ C. By distributing we see v = a1v1 + b1iv1 + · · ·+ anvn + anivn, so the set generates.

6.29 (a) Start with a basis {u1, u2, . . . , uk} for W1 ∩ W2. Extend it to a basis {u1, . . . , uk, v1, . . . , vm}
for W1 and to a basis {u1, . . . , uk, w1, . . . , wn} for W2. Then {u1, . . . , uk, v1, . . . , vm, w1, . . . , wn}
generate. For this set to form a basis we need to check linear independence. We will argue by
contradiction. Assume a1u1 + · · · akuk + b1v1 · · · + bmvm + c1w1 + · · · + cnwn = 0, with the
constants not all zero. We must have at least some bi nonzero, because otherwise we have a linear
dependence relation among the ui, wj and they form a basis. Similarly a ci must be nonzero.
Then we have the relation a1u1 + · · · akuk + b1v1 · · ·+ bmvm = −c1w1− · · · − cnwn. But the right
hand side of the equation is an element in W2 \W1 and the right hand side is an element in W1.
Contradiction.
Therefore, {u1, . . . , uk, v1, . . . , vm, w1, . . . , wn} is a basis for W1 +W2. So we have dim(W1 +W2 =
k + m + n = (k + m) + (k + n)− k =dim(W1) + dim(W2) −dim(W1 ∩W2) .

(b) Since V = W1 + W2, we only need to check that W1 ∩ W2 = {0}. Since, by (a), dim(V) =
dim(W1 + W2) = dim(W1) + dim(W2) − dim (W1 ∩W2), the intersecion is the zero vector if and
only if dim (W1∩W2)=0, which is if and only if dim(V) = dim(W1 +W2) = dim(W1) + dim(W2).

6.31 (a) Since W1 ∩W2 ⊂ W2, we have dim(W1 ∩W2) ≤dim(W2) = n.

(b) By [6.29] dim(W1 +W2) = dim(W1) + dim(W2) −dim(W1 ∩W2) ≤ dim(W1) + dim(W2)= m+n

Chapter 2

1.1 (a) True.

(b) False.



MATH110 Assignment 4 2

(c) True.

(d) True.

(e) False.

(f) False.

(g) True.

(h) False.

1.4 The null space has dimension 4 and a basis for the null space of T is:(
1 2 −4
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)
The dimension of the range of T is 2 and a basis is:(

1 0
0 0

)
,

(
0 1
0 0

)
Thus we have 4+2 = 6 = dim(V). T is neither one-to-one nor onto.

1.6 The dimension of the null space is n2 − 1. Since the null space is exactly the subspace of trace zero
matrices, by last week’s homework we know {Ei,j , E1,1 − Ek,k : 1 < k ≤ n, 1 ≤ i, j ≤ n, i 6= j} is a
basis.

The dimension of the range is 1 and a basis is 1F .

Thus we have n2 − 1 + 1 = n2 = dimMn×n(F ). T is onto.

1.9 (d) T (−1, 0) = (1, 0) 6= (−1, 0) = −T (1, 0)

(e) T (0, 0) = (1, 0 6= (0, 0) = 0R2

1.10 T (2, 3) = T ((3 · (1, 1)− (1, 0)) = 3T (1, 1)− T (1, 0) = (6, 15)− (1, 4) = (5, 11). T is one-to-one, because
since the dim R(T) = 2, by the rank-nullity theorem, dim N(T) = 0.

1.12 No, there is no such T. By linearity T (−2, 0, 6) = −2 · T (1, 0, 3).

1.14a ⇒ Assume T does not take linearly independent subsets to linearly independent subsets. This means
we can find v1, . . . , vn linearly independent in V, and a1, . . . , an, not all zero, such that a1T (v1)+ · · ·+
anT (vn) = 0. By linearity, a1T (v1) + · · · + anT (vn) = T (a1v1 + · · · + anvn) = 0. Since v1, . . . , vn are
linearly independent, a1v1 + · · · + anvn 6= 0, so T sends a nonzero vector to the zero vector and T is
not one-to-one.

⇐ Assume T sends linearly independent sets to linearly independent sets. Take a basis v1, . . . , vn

of V . Given a nonzero v ∈ V write v as a1v1 + · · · + anvn. Then T (v) = T (a1v1 + · · · + anvn) =
a1T (v1) + · · · + anT (vn) Since T (v1), . . . , T (vn) are linearly independent and the ai are not all zero,
T (v) is nonzero. Therefore, T is one-to-one.

1.16 Since T is linear, to show T is onto, it suffices to show that given the basis 1, x, x2, x3, . . ., there exists
an fn ∈ P (R) such that T (fn) = xn for all n. If we take fn = xn+1/(n + 1), this works. However, T
is not one-to-one because T (c) = 0 for all constants c.

1.22 Let a = T (1, 0, 0), b = T (0, 1, 0), c = T (0, 0, 1). Then, by linearity, T (x, y, z) = xT (1, 0, 0)+yT (0, 1, 0)+
zT (0, 0, 1) = xa + yb + zc. For T : Fn → F you need n scalars, and for T : Fn → Fm you need n
vectors of Fm.

1.24 (a) T (a, b) = (0, b)

(b) T (a, b) = T ((0, b− a) + (a, a)) = (0, b− a).
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1.28 By linearity T (0V ) = 0V , so {0} is T-invariant. By definition, T (V ) ⊂ V , so V is T-invariant.
T (N(T )) = {0} ⊂ V so N(T) is T-invariant. T (R(T )) ⊂ R(T ) by definition of R(T) so R(T) is
T-invariant.

1.29 Since W is T-invariant, T (W ) ⊂ W , and since W is a subspace, for all x, y ∈ W , c ∈ F , T (x)+T (y) ⊂ W
and cT (x) ∈ W so TW is well-defined. Since T is a linear transformation, W ⊂ V , and all properties
of the linear transformation hold in V, they must hold in W.

2.1 (a) True.

(b) True.

(c) False. It is an n×m matrix.

(d) True.

(e) True.

(f) False.

2.2 (a)

 2 −1
3 4
1 0


(c)

(
2 1 −3

)
(f)


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0



2.4 [T ]γβ =

 1 1 0 0
0 0 0 2
0 1 0 0



2.5 (a) [T ]α =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



(b) [T ]αβ =


0 1 0
2 2 2
0 0 0
0 0 2


(c) [T ]αγ =

(
1 0 0 1

)
(d) [T ]γβ =

(
1 2 4

)
(e) [A]α =


1
−2
0
4


(f) [f(x)]β =

 3
−6
1


(g) [a]γ = (a)

2.9 T (az1 + bz2) = ¯az1 + bz2 = ¯az1 + ¯bz2 = az̄1 + bz̄2 = at(z1)+ bT (z2). So T is linear. [T ]β =
(

1 0
0 −1

)
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2.13 Say aU + bT = 0. That means for all v ∈ V aU(v)+ bT (v) = 0W = U(av)+T (bv). Therefore, U(av) =
−T (bv) = T (−bv). Since U(av) ⊂ R(U) and T (−bv) ⊂ R(T ), U(av) = T (−bv) ⊂ R(U) ∩R(T ) = {0}.
Therefore U(av) = aU(v) = 0 = −bT (v) = T (−bv) for all v. Since T and U are nonzero, a = b = 0.
Thus, U and T are linearly independent.

2.14 Say a1T1 + · · ·+ anTn = 0. Then (a1T1 + · · ·+ anTn)(x) = a1 = 0. But also (a2T2 + · · ·+ anTn)(x2) =
2a1 = 0, so a2 = 0. Repeating this process until xn will show that all the ai are zero so the Ti are
linearly independent.


