Assignment 3

MATH110

January 27, 2007

Section 1.5: 1,3,5,7,10,11,15; Section 1.6: 1,3,5,12,15

- 5.1 (a) False. There exists a vector in S which is a linear combination of other vectors in S.
 - (b) True. $c \cdot 0_V = 0_V$ for any nonzero $c \in F$.
 - (c) False. The empty set is linearly independent.
 - (d) False. The set consisting of one nonzero vector is linearly independent.
 - (e) True.
 - (f) True.

5.3

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_{M_{2x3}(F)}$$

5.5 Assume $a_0 1 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0_{P_n(F)}$. Since the zero vector has negative degree, $a_i = 0$ for all *i*. Therefore $\{1, x, x^2, \dots, x^n\}$ is linearly independent.

5.7

$$\left(\begin{array}{cc}1&0\\0&0\end{array}\right), \left(\begin{array}{cc}0&0\\0&1\end{array}\right)$$

generate the 2×2 diagonal matrices.

- 5.10 $\{(1,0,0), (0,1,0), (1,1,0)\}$ are a linearly dependent set and none are a multiple of the other.
- 5.11 Span(S) = $\{a_1u_+\cdots + a_nu_n | a_i \in \mathbb{Z}_2\}$ and because S is a linearly independent set, each vector in Span(S) can be written uniquely in this way. Therefore to count the number of vectors in Span(S), we need to count the possibilities for (a_1, \ldots, a_n) . Since \mathbb{Z}_2 has 2 elements, there are 2^n possibilities for (a_1, \ldots, a_n) , and therefore 2^n vectors in Span(S).

5.15 $S = \{u_1, u_2, \dots, u_n\}$ Prove S is linearly dependent $\iff u_1 = 0$ or $u_{k+1} \in \text{Span}(\{u_1, \dots, u_k\})$

 \Leftarrow This direction follows from the definitions

 $\Rightarrow \text{Since S is linearly dependent, there exists } a_1, \ldots, a_n \in F \text{ not all zero, such that } a_1u_1 + \cdots + a_nu_n = 0.$ Let k be such that $a_i = 0$ for all i > k + 1 and $a_{k+1} \neq 0$. Then our equation reduces to $a_1u_1 + \cdots + a_{k+1}u_{k+1} = 0$. If k = 0, then $u_1 = 0$. If k > 0, then $a_1u_1 + \cdots + a_ku_k = a_{k+1}u_{k+1}$. Since $a_{k+1} \neq 0$, we can divide by a_{k+l} and $u_{k+1} \in \text{Span}(\{u_1, \ldots, u_k\}).$

- 6.1 (a) False. The empty set is a basis for the zero vector space.
 - (b) True.
 - (c) False. Infinite dimensional vector spaces do not have finite bases.
 - (d) False. $\{(1,0), (0,1)\}$ and $\{(1,0), (1,1)\}$ are both bases for \mathbb{R}^2 .
 - (e) True.

- (f) False. The dimension is n + 1.
- (g) False. The dimension is mn.
- (h) True.
- (i) False.
- (j) True.
- (k) True.
- (l) True.
- 6.3 (b), (c), and (d) are bases. (a) and (e) are not.
- 6.5 No. A set of 4 vectors in a 3-dimensional space is never linearly independent.
- 6.8 u_1, u_3, u_5 , and u_7 form a basis for W.
- 6.12 Since V is 3-dimensional, it suffices to show that $\{u + v + w, v + w, w\}$ is linearly independent.

a(u + v + w) + b(v + w) + cw = 0 = au + (a + b)v + (a + b + c)w.

Since $\{u, v, w\}$ are linearly independent, a = a + b = a + b + c = 0. Therefore a = b = c = 0, and $\{u + v + w, v + w, w\}$ are linearly independent.

6.15 The set $\{E_{i,j}, E_{1,1} - E_{k,k} : 1 < k \le n, 1 \le i, j \le n, i \ne j\}$ is a basis for the trace zero matrices. $(E_{i,j}$ is the matrix with 1 in the i, j place and 0's everywhere else.) The dimension is $n^2 - 1$ because there are $n^2 - 1$ basis vectors.