
Assignment 2

MATH110

January 30, 2007

Section 1.2: 9, 17, 18, 21; Section 1.3: 1, 2h, 8, 9, 13, 19, 23; Section 1.4: 1, 2a, f, 3 a, f, 4d, 7, 14

2.9 (a) Corollary 1. The vector ~0 described in VS3 is unique.
Assume that there are two zero vectors, ~0 and ~0′. Then given any vector x, x+~0 = x = x+~0′ by
property of the zero vector. Then by the Cancellation Law for Vector Addition (page 11) ~0 = ~0′.

(b) Corollary 2. The vector ~y described in VS4 is unique.
Given a vector ~x ∈ V , let ~y and ~y′ satisfy the property in VS4. Then

~x + ~y = ~0 = ~x + ~y′.

By the Cancellation Law for Vector Addition, we can cancel ~x, and so ~y = ~y′.

(c) Theorem 1.2(c) a ·~0 = ~0 for all a ∈ F .

a ·~0 = a · (~0 +~0) = a ·~0 + a ·~0

and by the Cancellation Law, 0 = a ·~0.

2.17 V is not a vector space over F with these operations because (V S5) fails.

1 · (a1, a2) = (a1, 0) 6= (a1, a2).

2.18 V is not a vector space over F with these operations because (V S1) fails.

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2) 6= (b1 + 2a1, b2 + 3a2) = (b1, b2) + (a1, a2).

2.21 Since addition and multiplication is done component-wise, and each component satisfies (V S1)−(V S8),
Z satisfies all the properties and is a vector space.

3.1 (a) True.

(b) False. Any vector space needs to contain the 0 vector.

(c) True. Let W be the 0 vector space.

(d) False. The subsets may not contain the zero vector.

(e) True.

(f) False. The trace is the sum of the diagonal entries.

(g) False. The zero vector in W is (0, 0, 0) and the zero vector in R2 is (0, 0).

3.2 (h)  −4 0 6
0 1 −3
6 −3 5

t

=

 −4 0 6
0 1 −3
6 −3 5


Trace = −4 + 1 + 5 = 2.
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3.8 (a) Is a subspace.

(a1, a2, a3)+(b1, b2, b3) = (a1+b1, a2+b2, a3+b3) a1+b1 = 3a2+3b2 = 3(a2+b2), a3+b3 = −a2+−b2 = −1(a2+b2)

c(a1, a2, a3) = (ca1, ca2, ca3) ca1 = c(3a2) = 3(ca2), ca3 = c(−a2) = −ca2)

The ~0 satisfies 0 = 3 · 0, 0 = −1 · 0.

(b) Not a subspace, does not contain the zero vector.

(c) Is a subspace. Prove as in (a)

(d) Is a subspace. Prove as in (a)

(e) Not a subspace, does not contain the zero vector.

(f) Not a subspace. (0, 2,
√

2), and (0,−2,
√

2) are in W6, but their sum (0, 0, 2
√

2) is not in W6.

3.9 (a) W1 ∩W3 = {(a1, a2, a3) ∈ R3 : a1 = 3a2, a3 = −a2, 2a1 − 7a2 + a3 = 0} = { the zero vector }
(b) W1 ∩W4 = {(a1, a2, a3) ∈ R3 : a1 = 3a2, a3 = −a2, a1 − 4a2 − a3 = 0} = W1

(c) W3∩W4 = {(a1, a2, a3) ∈ R3 : a1−4a2−a3, 2a1−7a2 +a3 = 0} = {(a1, a2, a3) ∈ R3 : 3a1−11a2 =
0, a3 = a1 − 4a2}

3.13 Let W = {f ∈ F(S, F ) : f(s0) = 0}. The zero vector sends every element to 0 so the zero vector
is in W . Given f, g ∈ W , (f + g(s0)) = f(s0) + g(s0) = 0 + 0 = 0, so f + g ∈ W and W is closed
under addition. Given c ∈ F , (cf)(s0) = c(f(s0)) = c · 0 = 0, so cf ∈ W and W is closed under scalar
multiplication. Therefore W is a subspace for any choice of s0.

3.19 Let W1, W2 be subspaces of a vector space V . Prove that W1 ∪W2 is a subspace of V ⇐⇒ W1 ⊆ W2

or W2 ⊆ W1

⇒ Given a vector w1 ∈ W1, and w2 ∈ W2, consider v := w1 + w2. Since W1 ∪ W2 is a subspace,
v ∈ W1 ∪W2.

Case 1: There is some w2 ∈ W2 such that v := w1 + w2 is in W2. Since w1 = v + (−w2) and
v,−w2 inW2, w1 is also in W2. Therefore W1 ⊆ W2.

Case 2: For every w2 ∈ W2, v := w1 + w2 is in W1. Since w2 = v + (−w1), and w1, v ∈ W1, w2 is also
in W1 for all w2 ∈ W2. Therefore W2 ⊆ W1.

⇐ If W1 ⊆ W2 or W2 ⊆ W1, W1 ∪W2 is equal to W2 or W1 respectively. W1 and W2 are subspaces so
the union is also a subspace.

3.23 W1 + W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}

(a) The zero vector is in W1 and W2 so ~0 +~0 = ~0 is in W1 + W2. For any v, v′ ∈ W1 + W2 and c ∈ F ,
there exists w1, w

′
1 ∈ W1 and w2, w

′
2 ∈ W2 such that v = w1 + w2 and v′ = w′

1 + w′
2.

v + v′ = w1 + w2 + w′
1 + w′

2 = (w1 + w′
1) + (w2 + w′

2), w1 + w′
1 ∈ W1, w2 + w′

2 ∈ W2,

therefore v + v′ ∈ W1 + W2.

c · v = c(w1 + w2) = cw1 + cw2, cw1 ∈ W1, cw2 ∈ W2,

therefore c·v is in W1+W2. Thus, W1+W2 is a subspace. W1 ⊂ W1+W2 because w1+0 ∈ W1+W2

for any w1 ∈ W1. Similarly, W2 ⊂ W1 + W2.

(b) Let W be a vector space which contains W1 and W2. Then for all vectors w1 ∈ W1 and w2 ∈ W2,
w1 + w2 must be in W . Therefore W1 + W2 ⊂ W .

4.1 (a) True.

(b) False. The span of the empty set is the zero vector.

(c) True.
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(d) False.

(e) True.

(f) False.

4.2 (a)

2x1 − 2x2 − 3x3 = −2
3x1 − 3x2 − 2x3 + 5x4 = 7
x1 − x2 − 2x3 − x4 = −3

7−→
x1 − x2 + 3x4 = 5

x3 + 2x4 = 4
0 = 0

(5 + x2 +−3x4, x2, 4− 2x4, x4) are solutions to the linear set of equations for any x2, x4 ∈ R
(f)

x1 + 2x2 + 6x3 = −1
2x1 + x2 + x3 = 8
3x1 + x2 − x3 = 15
x1 + 3x2 + 10x3 = −5

7−→

x1 = 3
x2 = 4

x3 = −2
0 = 0

(3, 4,−2) is the only solution to this set of linear equations.

4.3 (a) (2, 4,−1) = −1
3 · (−2, 0, 3) + 4

3 · (1, 3, 0).

(f) (−3,−3, 3) = 1
2 · (−2, 2, 2) +−2 · (1, 2,−1).

4.4 (d) 1/5(x3 + x2 + 2x + 13) + 2/5(2x3 − 3x2 + 4x + 1) = x3 − x2 + 2x + 3

4.7 (a1, a2, . . . , an) = a1 · e1 + a2 · e2 + · · · + an · en, so every vector in Fn can be written as a linear
combination of the ei’s.

4.14 Step 1: span(S1 ∪ S2) ⊂ span(S1) + span(S2)

Take u ∈ span(S1∪S2), i.e. u =
∑

ci ·ui, where ui ∈ S1∪S2. Split the sum into two pieces, one where
ui ∈ S1 and the other where u1 /∈ S1, i.e. u =

∑
ui∈S1

ciui +
∑

uj /∈S1
cjuj . Then the first summation

is in the span of S1, and since all ui were in S1 ∪ S2, the second summation is in the span of S2. Thus
we have the desired containment.

Step 2: span(S1) + span(S2)⊂ span(S1 ∪ S2)

Take u ∈ span(S1) + span(S2), so u = v +w where v ∈ span(S1), w ∈ span(S2). Then v +w is a linear
combination of vectors in S1 or S2, so u = v + w is in the span of S1 ∪ S2.


