Assignment 2

MATH110

January 30, 2007

Section 1.2: 9, 17, 18, 21; Section 1.3: 1, 2h, 8, 9, 13, 19, 23; Section 1.4: 1, 2a, f, 3 a, f, 4d, 7, 14

- 2.9 (a) **Corollary 1.** The vector $\vec{0}$ described in VS3 is unique. Assume that there are two zero vectors, $\vec{0}$ and $\vec{0}'$. Then given any vector \mathbf{x} , $\mathbf{x} + \vec{0} = \mathbf{x} = \mathbf{x} + \vec{0}'$ by property of the zero vector. Then by the Cancellation Law for Vector Addition (page 11) $\vec{0} = \vec{0}'$.
 - (b) **Corollary 2.** The vector \vec{y} described in VS4 is unique. Given a vector $\vec{x} \in V$, let \vec{y} and $\vec{y'}$ satisfy the property in VS4. Then

$$\vec{x} + \vec{y} = \vec{0} = \vec{x} + \vec{y'}$$

By the Cancellation Law for Vector Addition, we can cancel \vec{x} , and so $\vec{y} = \vec{y'}$.

(c) **Theorem 1.2(c)** $a \cdot \vec{0} = \vec{0}$ for all $a \in F$.

$$a \cdot \vec{0} = a \cdot (\vec{0} + \vec{0}) = a \cdot \vec{0} + a \cdot \vec{0}$$

and by the Cancellation Law, $0 = a \cdot \vec{0}$.

2.17 V is not a vector space over F with these operations because (VS5) fails.

$$1 \cdot (a_1, a_2) = (a_1, 0) \neq (a_1, a_2).$$

2.18 V is not a vector space over F with these operations because (VS1) fails.

$$(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2) \neq (b_1 + 2a_1, b_2 + 3a_2) = (b_1, b_2) + (a_1, a_2).$$

- 2.21 Since addition and multiplication is done component-wise, and each component satisfies (VS1)-(VS8), Z satisfies all the properties and is a vector space.
- 3.1 (a) True.
 - (b) False. Any vector space needs to contain the 0 vector.
 - (c) True. Let W be the 0 vector space.
 - (d) False. The subsets may not contain the zero vector.
 - (e) True.
 - (f) False. The trace is the *sum* of the diagonal entries.
 - (g) False. The zero vector in W is (0,0,0) and the zero vector in \mathbb{R}^2 is (0,0).

3.2 (h)

$$\left(\begin{array}{rrrr} -4 & 0 & 6\\ 0 & 1 & -3\\ 6 & -3 & 5 \end{array}\right)^t = \left(\begin{array}{rrrr} -4 & 0 & 6\\ 0 & 1 & -3\\ 6 & -3 & 5 \end{array}\right)$$

Trace = -4 + 1 + 5 = 2.

3.8 (a) Is a subspace.

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \quad a_1 + b_1 = 3a_2 + 3b_2 = 3(a_2 + b_2), a_3 + b_3 = -a_2 + -b_2 = -1(a_2 + b_2)$$
$$c(a_1, a_2, a_3) = (ca_1, ca_2, ca_3) \quad ca_1 = c(3a_2) = 3(ca_2), ca_3 = c(-a_2) = -ca_2)$$

$$c(a_1, a_2, a_3) = (ca_1, ca_2, ca_3)$$
 $ca_1 = c(3a_2) = 3(ca_2), ca_3 = c(-a_2) = -$

The $\vec{0}$ satisfies $0 = 3 \cdot 0, 0 = -1 \cdot 0$.

- (b) Not a subspace, does not contain the zero vector.
- (c) Is a subspace. Prove as in (a)
- (d) Is a subspace. Prove as in (a)
- (e) Not a subspace, does not contain the zero vector.
- (f) Not a subspace. $(0, 2, \sqrt{2})$, and $(0, -2, \sqrt{2})$ are in W_6 , but their sum $(0, 0, 2\sqrt{2})$ is not in W_6 .
- 3.9 (a) $W_1 \cap W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2, a_3 = -a_2, 2a_1 7a_2 + a_3 = 0\} = \{$ the zero vector $\}$
 - (b) $W_1 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2, a_3 = -a_2, a_1 4a_2 a_3 = 0\} = W_1$
 - (c) $W_3 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 4a_2 a_3, 2a_1 7a_2 + a_3 = 0\} = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 3a_1 11a_2 = 0\}$ $0, a_3 = a_1 - 4a_2$
- 3.13 Let $W = \{f \in \mathcal{F}(S,F) : f(s_0) = 0\}$. The zero vector sends every element to 0 so the zero vector is in W. Given $f, g \in W$, $(f + g(s_0)) = f(s_0) + g(s_0) = 0 + 0 = 0$, so $f + g \in W$ and W is closed under addition. Given $c \in F$, $(cf)(s_0) = c(f(s_0)) = c \cdot 0 = 0$, so $cf \in W$ and W is closed under scalar multiplication. Therefore W is a subspace for any choice of s_0 .
- 3.19 Let W_1, W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of $V \iff W_1 \subseteq W_2$ or $W_2 \subseteq W_1$

 \Rightarrow Given a vector $w_1 \in W_1$, and $w_2 \in W_2$, consider $v := w_1 + w_2$. Since $W_1 \cup W_2$ is a subspace, $v \in W_1 \cup W_2.$

Case 1: There is some $w_2 \in W_2$ such that $v := w_1 + w_2$ is in W_2 . Since $w_1 = v + (-w_2)$ and $v, -w_2$ in W_2, w_1 is also in W_2 . Therefore $W_1 \subseteq W_2$.

Case 2: For every $w_2 \in W_2$, $v := w_1 + w_2$ is in W_1 . Since $w_2 = v + (-w_1)$, and $w_1, v \in W_1$, w_2 is also in W_1 for all $w_2 \in W_2$. Therefore $W_2 \subseteq W_1$.

 \leftarrow If $W_1 \subseteq W_2$ or $W_2 \subseteq W_1, W_1 \cup W_2$ is equal to W_2 or W_1 respectively. W_1 and W_2 are subspaces so the union is also a subspace.

- 3.23 $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$
 - (a) The zero vector is in W_1 and W_2 so $\vec{0} + \vec{0} = \vec{0}$ is in $W_1 + W_2$. For any $v, v' \in W_1 + W_2$ and $c \in F$, there exists $w_1, w'_1 \in W_1$ and $w_2, w'_2 \in W_2$ such that $v = w_1 + w_2$ and $v' = w'_1 + w'_2$.

$$w + v' = w_1 + w_2 + w'_1 + w'_2 = (w_1 + w'_1) + (w_2 + w'_2), \quad w_1 + w'_1 \in W_1, w_2 + w'_2 \in W_2,$$

therefore $v + v' \in W_1 + W_2$.

$$c \cdot v = c(w_1 + w_2) = cw_1 + cw_2, \quad cw_1 \in W_1, cw_2 \in W_2,$$

therefore $c \cdot v$ is in $W_1 + W_2$. Thus, $W_1 + W_2$ is a subspace. $W_1 \subset W_1 + W_2$ because $w_1 + 0 \in W_1 + W_2$ for any $w_1 \in W_1$. Similarly, $W_2 \subset W_1 + W_2$.

- (b) Let W be a vector space which contains W_1 and W_2 . Then for all vectors $w_1 \in W_1$ and $w_2 \in W_2$, $w_1 + w_2$ must be in W. Therefore $W_1 + W_2 \subset W$.
- 4.1 (a) True.
 - (b) False. The span of the empty set is the zero vector.
 - (c) True.

- (d) False.
- (e) True.
- (f) False.
- 4.2 (a)

 $(5 + x_2 + -3x_4, x_2, 4 - 2x_4, x_4)$ are solutions to the linear set of equations for any $x_2, x_4 \in \mathbb{R}$ (f)

x_1	+	$2x_2$	+	$6x_3$	=	-1	x_1			=	3
				x_3				x_2		=	4
$3x_1$	+	x_2	_	x_3	=	15	\mapsto		x_3	=	-2
x_1	+	$3x_2$	+	$10x_{3}$	=	-5			0	=	0

(3, 4, -2) is the only solution to this set of linear equations.

- 4.3 (a) $(2, 4, -1) = \frac{-1}{3} \cdot (-2, 0, 3) + \frac{4}{3} \cdot (1, 3, 0).$ (f) $(-3, -3, 3) = \frac{1}{2} \cdot (-2, 2, 2) + -2 \cdot (1, 2, -1).$
- 4.4 (d) $1/5(x^3 + x^2 + 2x + 13) + 2/5(2x^3 3x^2 + 4x + 1) = x^3 x^2 + 2x + 3$
- 4.7 $(a_1, a_2, \ldots, a_n) = a_1 \cdot e_1 + a_2 \cdot e_2 + \cdots + a_n \cdot e_n$, so every vector in F^n can be written as a linear combination of the e_i 's.

4.14 Step 1: $\operatorname{span}(S_1 \cup S_2) \subset \operatorname{span}(S_1) + \operatorname{span}(S_2)$

Take $u \in \operatorname{span}(S_1 \cup S_2)$, i.e. $u = \sum c_i \cdot u_i$, where $u_i \in S_1 \cup S_2$. Split the sum into two pieces, one where $u_i \in S_1$ and the other where $u_1 \notin S_1$, i.e. $u = \sum_{u_i \in S_1} c_i u_i + \sum_{u_j \notin S_1} c_j u_j$. Then the first summation is in the span of S_1 , and since all u_i were in $S_1 \cup S_2$, the second summation is in the span of S_2 . Thus we have the desired containment.

Step 2: $\operatorname{span}(S_1) + \operatorname{span}(S_2) \subset \operatorname{span}(S_1 \cup S_2)$

Take $u \in \text{span}(S_1) + \text{span}(S_2)$, so u = v + w where $v \in \text{span}(S_1)$, $w \in \text{span}(S_2)$. Then v + w is a linear combination of vectors in S_1 or S_2 , so u = v + w is in the span of $S_1 \cup S_2$.