Math 110, Professor Ogus
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(a) The characteristic polynomial is (t—1)(¢—3), which has distinct roots,
since the roots of the minimal polynomial are exactly the eigenvalues, the
two must coincide.

(b) The characteristic polynomial is (t—1)%(t—2), so we check if (t—1)(t—2)
is the minimal polynomial. Expanding this, it amounts to checking if
A? — 3A +2I = 0. But this is not zero, and so the minimal polynomial
must be (t —1)2(t — 2).
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polynomial is (¢ + v/2)(t — v/2), which has distinct roots — thus it is also
the minimal polynomial. This also implies the operator is diagonalizable.

With respect to the standard basis, [T] = < ) and the characteristic

First notice that T2 = I, so p(T') = 0, where p(t) = t> — 1. The minimal
polynomial divides p(t) = (¢t — 1)(t + 1), but since T+ I # 0, p(t) must
be the minimal polynomial. To show diagonalizability, we present a basis
of eigenvectors: Ey = span{FE1, E22, E12 + F21} and E_1 = span{E1s —
E21}'

(a) T is invertible iff 0 is not an eigenvalue. But the eigenvalues are
precisely the roots of it’s minimal polynomial. Thus T is invertible iff
p(0) #=.

(b) we have 0 = p(T) = T" +a,_1T" ' +...+agl, and by moving the last
term to the other side, and dividing my ag, we get I = ;—01 (T"+a, 1T 1+
...+ a1 T), pulling out T, we get [ = ;—;(T”fl +an T2 +.. . +a )T
— multiplying on the right by T—! gives the result.

Since T is diagonalizable, we have that V is the direct sum of the eigenspaces
E),, and thus every vector in V" has a unique representation as the sum of
eigenvectors. Now V is T-cyclic iff 3z € V s.t. {x,Tx,...,T" 'z} is a ba-
sis for V. Now, using the direct sum decomposition, write z = v1+. ..+ vy.
So we therefore have the basis {v1+. .. 4+vg, Ao+ -+ AgUg, . -y /\?711)1—1—
= )\Z_lvk} Thus a general vector w = ag(vy + ...+ vg) + a1 (A1v1 +
o M) F et a1 (AT o o+ AP ). Or, if we call g(t) =
ag+ait+ ...+ a,_1t" 1, then we can write w = g(A1)vy + ... + g(\p)vg
—i.e. {vy,..., v} is a basis for V — i.e. each E), is one-dimensional. For
the other direction, we note that this argument is reversible.

Suppose Jg(t) s.t. g(D) = 0. if deg(g) = n, then we look at g(D)z™.
0=g(D)x™ = a, D"x" + ...+ apz™ = apn! + ... + apz™, but for this to
be zero as a polynomial, all the coeflicients must be zero — i.e. g(t) = 0.
This, however, cannot be a minimal polynomial, as it’s not monic.



7.3.15 (a)The T-annihilator always exists, as the minimal polynomial annihi-
lates . Now suppose p,q are both T-annihilators — so both have the
same degree (as they’re both least degree) and both are monic — but
(p — ¢)(T)x = 0 and has a strictly smaller degree, and we can make it
monic by dividing through by the next nonzero coefficient. This contra-
dicts the fact that p and g have least degree, and so thus there must
not be another nonzero coefficient — i.e. p = ¢. (b) The proof for
Theorem 7.12(a) works verbatim for this. (c) We need to show that
p(Tw) = 0. As W is T-cyclic, any w = ¢(T)z for some polynomial g.
Now, p(Tw)w = p(T)w = p(T)q(T)z = q(T)P(T)x = q(T)0 = 0. p(t) is
also of least degree, as if there was a polynomial of smaller degree that
killed all of W, then it would also send z to zero, asz € W. (d) p(t) = t—A,
then p(T)z = (T — Nz =0 iff x € Ej.



