
Math 110, Professor Ogus
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7.3.2 (a) The characteristic polynomial is (t−1)(t−3), which has distinct roots,
since the roots of the minimal polynomial are exactly the eigenvalues, the
two must coincide.

7.3.2 (b) The characteristic polynomial is (t−1)2(t−2), so we check if (t−1)(t−2)
is the minimal polynomial. Expanding this, it amounts to checking if
A2 − 3A + 2I = 0. But this is not zero, and so the minimal polynomial
must be (t− 1)2(t− 2).

7.3.3(a),7.3.4(a) With respect to the standard basis, [T ] =
(

1 1
1 −1

)
and the characteristic

polynomial is (t +
√

2)(t −
√

2), which has distinct roots – thus it is also
the minimal polynomial. This also implies the operator is diagonalizable.

7.3.3(d),7.3.4(d) First notice that T 2 = I, so p(T ) = 0, where p(t) = t2 − 1. The minimal
polynomial divides p(t) = (t − 1)(t + 1), but since T ± I 6= 0, p(t) must
be the minimal polynomial. To show diagonalizability, we present a basis
of eigenvectors: E1 = span{E11, E22, E12 + E21} and E−1 = span{E12 −
E21}.

7.3.8 (a) T is invertible iff 0 is not an eigenvalue. But the eigenvalues are
precisely the roots of it’s minimal polynomial. Thus T is invertible iff
p(0) 6==.
(b) we have 0 = p(T ) = Tn+an−1T

n−1 + . . .+a0I, and by moving the last
term to the other side, and dividing my a0, we get I = −1

a0
(Tn+an−1T

n−1+
. . .+ a1T ), pulling out T , we get I = −1

a0
(Tn−1 + an−1T

n−2 + . . .+ a1I)T
– multiplying on the right by T−1 gives the result.

7.3.9 Since T is diagonalizable, we have that V is the direct sum of the eigenspaces
Eλi , and thus every vector in V has a unique representation as the sum of
eigenvectors. Now V is T -cyclic iff ∃x ∈ V s.t. {x, Tx, . . . , Tn−1x} is a ba-
sis for V . Now, using the direct sum decomposition, write x = v1+. . .+vk.
So we therefore have the basis {v1+. . .+vk, λ1v1+· · ·+λkvk, . . . , λn−1

1 v1+
. . . + λn−1

k vk} Thus a general vector w = a0(v1 + . . . + vk) + a1(λ1v1 +
· · · + λkvk) + . . . + an−1(λn−1

1 v1 + . . . + λn−1
k vk). Or, if we call g(t) =

a0 + a1t+ . . .+ an−1t
n−1, then we can write w = g(λ1)v1 + . . .+ g(λk)vk

– i.e. {v1, . . . , vk} is a basis for V – i.e. each Eλi
is one-dimensional. For

the other direction, we note that this argument is reversible.

7.3.12 Suppose ∃g(t) s.t. g(D) = 0. if deg(g) = n, then we look at g(D)xn.
0 = g(D)xn = anD

nxn + . . . + a0x
n = ann! + . . . + a0x

n, but for this to
be zero as a polynomial, all the coefficients must be zero – i.e. g(t) = 0.
This, however, cannot be a minimal polynomial, as it’s not monic.
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7.3.15 (a)The T -annihilator always exists, as the minimal polynomial annihi-
lates x. Now suppose p, q are both T -annihilators – so both have the
same degree (as they’re both least degree) and both are monic – but
(p − q)(T )x = 0 and has a strictly smaller degree, and we can make it
monic by dividing through by the next nonzero coefficient. This contra-
dicts the fact that p and q have least degree, and so thus there must
not be another nonzero coefficient – i.e. p = q. (b) The proof for
Theorem 7.12(a) works verbatim for this. (c) We need to show that
p(TW ) = 0. As W is T -cyclic, any w = q(T )x for some polynomial q.
Now, p(TW )w = p(T )w = p(T )q(T )x = q(T )P (T )x = q(T )0 = 0. p(t) is
also of least degree, as if there was a polynomial of smaller degree that
killed all ofW , then it would also send x to zero, as x ∈W . (d) p(t) = t−λ,
then p(T )x = (T − λ)x = 0 iff x ∈ Eλ.
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