Math 110, Professor Ogus, Homework due 4/11

- 6.4.1 (a)T (b)F (c) F (d) T (e) T (f) T (g) F (h) T
- 6.4.3 1(c) is true if the basis is an orthonormal basis. Thus we need to find a normal operator whose matrix representation with respect to a NON-orthogonal basis is not normal. Let $T = L_A$ where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Since $T^* = -T$, T is normal. However, if we consider the basis $\beta = \{(1,0),(1,1)\}, [T]_{\beta} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$, which is not normal.
- 6.4.4 Assuming T and U are self-adjoint, we have TU are self adjoint $\Leftrightarrow (TU)^* = TU \Leftrightarrow U^*T^* = TU \Leftrightarrow UT + TU.$
- 6.4.6 (a) This exercise shows that every operator has a decomposition into a sum of a self-adjoint operator (T_1) and a skew-adjoint operator (iT_2) namely $T = T_1 + iT^2$. $T_1^* = \frac{1}{2}(T + T^*)^* = \frac{1}{2}(T^* + T^{**}) = \frac{1}{2}(T^* + T) = T_1$ $T_2^* = (\frac{1}{2i}(T - T^*))^* = \frac{-1}{2i}(T - T^*)^* = \frac{-1}{2i}(T^* - T^{**}) = T_2$ $T_1 + iT_2 = \frac{1}{2}(T + T^*) + i\frac{1}{2i}(T - T^*) = \frac{2T}{2} = T$ (b) This exercise shows that such a decomposition is unique: given self-adjoint operators U_1 and U_2 such that $T = U_1 + iU_2$, we show that $U_1 = T_1$ and $U_2 = T_2$. First we calculate $T_1 = \frac{1}{2}(T + T^*) = \frac{1}{2}((U_1 + iU_2) + (U_1 + iU_2)^*) = \frac{1}{2}(U_1 + iU_2 + U_1^* - iU_2^*) = U_1$ $T_2 = \frac{1}{2i}(T - T^*) = \frac{1}{2i}((U_1 + iu_2) - (U_1 + iU_2)^*) = \frac{1}{2i}(U_1 + iU_2 - U_1 + iU_2^*) = U_2$ (c) First we calculate $T^*T = (T_1 - iT_2)(T_1 + iT_2) = (T_1^2 + T_2^2) + i(T_1T_2 - T_2T_1)$ $TT^* = (T_1 + iT_2)(T_1 - iT_2) = (T_1^2 + T_2^2) + i(T_2T_1 - T_1T_2)$ Thus, setting the above equations equal and simplifying, we see that $T^*T = TT^* \Leftrightarrow T_1T_2 = T_2T_1$.
- 6.4.7 (a) Given $T = T^*$ we show that $T|_W = (T|_W)^*$ i.e. that $\langle T|_W x, y \rangle = \langle x, T|_W y \rangle \ \forall x, y \in W$. But this equality holds, as $x, y \in V$ and T is self-adjoint as an operator on V.

(b)We need to show $T^*(W^{\perp}) \subseteq W^{\perp}$. Fix an element $v \in W^{\perp}$. Then $\forall x \in W$ we have $\langle x, T^*v \rangle = \langle Tx, v \rangle = 0$ where the first equality holds by (a) and the second equality holds because $v \in W^{\perp}$ and $T(w) \in W$. Thus $T^*(v) \in W^{\perp}$.

(c)We need the hypotheses that W is T- and T^* -invariant so that the operators $T|_W$ and $(T^*)|_W$ are well-defined operators on W. Now $\forall x, y \in W$ $\langle x, (T|_W)^* y \rangle|_W = \langle T|_W x, y \rangle|_W = \langle Tx, y \rangle = \langle x, T^* y \rangle = \langle x, (T^*)|_W y \rangle|_W$. The above comment about these operators being well-defined operators on W guarantees that all the entries in these inner-products lie in W. (d) $T|_W T|_W^* = (T|_W)(T^*|_W)$ by part (c). Because T is a normal opera-

(d) $T|_W T|_W = (T|_W)(T|_W)$ by part (c). Because T is a normal operator in V, we have $(T|_W)(T^*|_W) = (TT^*)|_W = (T^*T)|_W = (T^*|_W)(T|_W)$. Then, again by part (c), we have $(T^*|_W)(T|_W) = (T|_W)^*(T|_W)$.

6.4.8 First we need to prove Ex 5.4.24: if T is a diagonalizable operator on V (finite dimensional), then $T|_W$ is diagonalizable for any T-invariant

subspace W. Pf: If T is diagonalizable, then V is a direct sum of the eigenspaces of T. So given (a basis element of W) $v \in W$ we can write it as a linear commutation of distinct eigenvectors $v = a_1v_1 + \ldots + a_kv_k$. By Midterm problem 4 (and a simple induction argument), we have that that each of these $v_k \in W$. Thus the set of all such v_k span W, and so by the Replacement Theorem, we can pick a basis for W among the v_k . These are all eigenvectors of T and therefore also eigenvectors of $T|_W$. Thus this basis is in fact a basis of eigenvectors, and so $T|_W$ is diagonalizable. [done with pf]. Now to prove the problem: assume that W is T-invariant, and that T is a normal operator on a finite dimensional complex inner product space. Since T is normal, T is diagonalizable. From the lemma above, $T|_W$ is also diagonalizable, and we therefore get a basis of W consisting of eigenvectors. By theorem 6.15, an eigenvector of $T|_W$ is also an eigenvector of $T^*|_W$, and so each eigenspace is also an eigenspace for $T^*|_W$. Since eigenspaces are invariant subspaces, we have that W is T^* -invariant.

- 6.4.9 Theorem 6.15 gives $||Tx|| = ||T^*x||$. Thus, $x \in N(T) \Leftrightarrow ||T^*x|| = ||Tx|| = ||0|| = 0$. As inner products are positive definite, this happens precisely when $T^*x = 0$ i.e. when $x \in N(T^*)$. Thus we have $N(T) = N(T^*)$. By Ex 6.3.12, we have that $R(T^*)^{\perp} = N(T)$. Since, T is an operator on a finite dimensional inner product space, we get that $R(T^*) = R(T^*)^{\perp \perp} = N(T)^{\perp}$. But, by the first part of this problem, $N(T)^{\perp} = N(T^*)^{\perp} = R(T^{**}) = R(T)$. Thus $R(T^*) = R(T)$.
- 6.4.12 One way to approach this problem is to apply Shur's theorem to get a basis β in which $[T]_{\beta}$ is upper-triangular, and proof of theorem 6.16 works verbatim.
- 6.4.22(b) We assume that $\langle x, y \rangle' = \langle Tx, y \rangle$ is an inner product. First we show that T is positive definite w/r/t the standard inner product: $\langle Tx, x \rangle = \langle x, x \rangle' \ge 0$ because we're assuming $\langle \cdot, \cdot \rangle'$ is an inner-product (and is therefore positive definite). We now show that T is positive definite w/r/t the inner product defined in the problem: $\langle Tx, x \rangle' = \langle T^2x, x \rangle = \langle Tx, Tx \rangle \ge 0$. The second equality used that T is self-adjoint (w/r/t the standard inner-product), which we must now prove. $\langle Tx, y \rangle = \langle x, y \rangle' = \overline{\langle y, x \rangle'} = \overline{\langle Ty, x \rangle} = \langle x, Ty \rangle$ Thus $T = T^*$.
 - 6.5.1 (a) T (b) F (c) F (d) T (e) F (f) T (g) F (h) F (i) F
- 6.5.2(a) A is self-adjoint and is therefore unitarily diagonalizable (and so the change of basis matrix that takes A to D will be unitary). A has eigenvalues $\lambda = -1, 3$. The (unit length) eigenvector corresponding to -1 is $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. The eigenvector corresponding to 3 is $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$. While $D = \begin{pmatrix} -1 & 0 \\ 0 & 3 \end{pmatrix}$.

- 6.5.2(e) A is self-adjoint (and thus normal) and so is unitarily diagonalizable. A has eigenvalues $\lambda = 8, -1$. The unit length eigenvector corresponding to 8 is $(\frac{1}{\sqrt{3}}, \frac{1+i}{\sqrt{3}})$, while the eigenvector corresponding to -1 is $(-\frac{2}{\sqrt{6}}, \frac{1+i}{\sqrt{6}})$. Thus $P = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} \\ \frac{1+i}{\sqrt{3}} & \frac{1+i}{\sqrt{6}} \end{pmatrix}$, while $D = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}$
 - 6.5.5 (a) These are NOT unitarily equivalent, as they have different eigenvalues. (b) These are NOT unitarily equivalent, as they have different eigenvalues.
 - (c) These are NOT unitarily equivalent, as they have different eigenvalues.
 - (d) $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is normal and thus unitarily equivalent to a diagonal

matrix. Furthmore, as the two matrice's eigenvalues coincide, the diagonal

matrix is the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}$. Thus the two matrices are unitarily

equivalent. (e) These are NOT unitarily equivalent. The first matrix is not self-adjoint, and is therefore not unitarily equivalent to a real diagonal matrix – while the second matrix is a real diagonal matrix.

- 6.5.10 Since A is real-symmetric or complex-normal, we know that A is diagonalizable. i.e. $A = PDP^{-1}$ where $D_{ij} = 0$ if $i \neq j$ and $D_{ii} = \lambda_i$, where λ_i are the eigenvalues of A. Thus we have $tr(A) = tr(PDP^{-1}) =$ tr($DP^{-1}P$) = tr(D) = $\sum \lambda_i$. Next (remembering that $P^* = P^{-1}$) we have $A^* = (PDP^*)^* = PD^*P^{-1}$. $tr(A^*A) = tr(PD^*P^{-1}PDP^{-1}) = tr(D^*D) = \sum |\lambda_i|^2$.
- 6.5.15 (a)We have that $U(W) \subseteq W$ because W is an invariant subspace. However, U is unitary, and therefore invertible, so $N(U|_W) = \{0\}$ and so $Rank(U|_W) = dimW$ – which implies that U(W) = W. (b) Suppose that $v \in W^{\perp}$ (so $\langle v, w \rangle = 0 \ \forall w \in W$). We have $\langle Uv, w \rangle =$ $\langle v, U^*w \rangle = \langle v, U^{-1} \rangle = 0$ because U restricts to an invertible operator on W (with $(U^{-1})|_W = (U|_W)^{-1}$, by 6.4.7(c)) and so $U^{-1}w \in W$. Thus $Uv \in W^{\perp}$.
- 6.5.16 Let V the inner product space of double infinite sequences with only a finite number of nonzero terms. i.e. $V = \{(\ldots, \sigma(k), \sigma(k+1), \ldots); \sigma(k) =$ 0 for all but a finite number of k} with inner product given by $\langle \sigma, \mu \rangle =$ $\sum_{k \in \mathbb{Z}} \sigma(k) \mu(k)$. Let $T(\sigma)(k) = \sigma(k+1)$ be the left shift operator. T is an isometry and is surjective, so is therefore unitary. Fix a number N, and consider the invariant subspace $W = \{\sigma; \sigma(k) = 0 \ \forall n \geq N\}$. We calculate W^{\perp} using the following basis for W: $\{e_i\}_{i\leq N}$ where $e_i(k) = \delta_{ik}$. So if $\sigma \in W^{\perp}$, then $0 = \langle \sigma, e_i \rangle = \sigma(i), \forall i \leq N$. Since this condition is also sufficient to be in W^{\perp} , we see $W^{\perp} = \{\sigma; \sigma(k) = 0 \ \forall k \leq N\}$. This is NOT invariant under left shift. NOTE: compare this example to example 3 on pg 372.