
Math 110, Professor Ogus, Homework due 4/11

6.4.1 (a)T (b)F (c) F (d) T (e) T (f) T (g) F (h) T

6.4.3 1(c) is true if the basis is an orthonormal basis. Thus we need to find a
normal operator whose matrix representation with respect to a NON-

orthogonal basis is not normal. Let T = LA where A =
(

0 −1
1 0

)
Since T ∗ = −T , T is normal. However, if we consider the basis β =

{(1, 0), (1, 1)}, [T ]β =
(

1 −2
1 −1

)
, which is not normal.

6.4.4 Assuming T and U are self-adjoint, we have TU are self adjoint⇔ (TU)∗ =
TU ⇔ U∗T ∗ = TU ⇔ UT + TU .

6.4.6 (a) This exercise shows that every operator has a decomposition into a
sum of a self-adjoint operator (T1) and a skew-adjoint operator (iT2) –
namely T = T1 + iT 2. T ∗1 = 1

2 (T +T ∗)∗ = 1
2 (T ∗+T ∗∗) = 1

2 (T ∗+T ) = T1

T ∗2 = ( 1
2i (T − T

∗))∗ = −1
2i (T − T ∗)∗ = −1

2i (T ∗ − T ∗∗) = T2 T1 + iT2 =
1
2 (T + T ∗) + i 1

2i (T − T
∗) = 2T

2 = T (b) This exercise shows that such a
decomposition is unique: given self-adjoint operators U1 and U2 such that
T = U1 + iU2, we show that U1 = T1 and U2 = T2. First we calculate T1 =
1
2 (T+T ∗) = 1

2 ((U1+iU2)+(U1+iU2)∗) = 1
2 (U1+iU2+U∗1−iU∗2 ) = U1 T2 =

1
2i (T−T

∗) = 1
2i ((U1+iu2)−(U1+iU2)∗) = 1

2i (U1+iU2−U1+iU∗2 ) = U2 (c)
First we calculate T ∗T = (T1−iT2)(T1 +iT2) = (T 2

1 +T 2
2 )+i(T1T2−T2T1)

TT ∗ = (T1 + iT2)(T1− iT2) = (T 2
1 +T 2

2 )+ i(T2T1−T1T2) Thus, setting the
above equations equal and simplifying, we see that T ∗T = TT ∗ ⇔ T1T2 =
T2T1.

6.4.7 (a) Given T = T ∗ we show that T |W = (T |W )∗ – i.e. that 〈T |Wx, y〉 =
〈x, T |W y〉 ∀x, y ∈ W . But this equality holds, as x, y ∈ V and T is self-
adjoint as an operator on V .
(b)We need to show T ∗(W⊥) ⊆ W⊥. Fix an element v ∈ W⊥. Then
∀x ∈ W we have 〈x, T ∗v〉 = 〈Tx, v〉 = 0 where the first equality holds by
(a) and the second equality holds because v ∈ W⊥ and T (w) ∈ W . Thus
T ∗(v) ∈W⊥.
(c)We need the hypotheses that W is T− and T ∗−invariant so that the op-
erators T |W and (T ∗)|W are well-defined operators on W . Now ∀x, y ∈W
〈x, (T |W )∗y〉|W = 〈T |Wx, y〉|W = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, (T ∗)|W y〉|W .
The above comment about these operators being well-defined operators
on W guarantees that all the entries in these inner-products lie in W .
(d) T |WT |∗W = (T |W )(T ∗|W ) by part (c). Because T is a normal opera-
tor in V , we have (T |W )(T ∗|W ) = (TT ∗)|W = (T ∗T )|W = (T ∗|W )(T |W ).
Then, again by part (c), we have (T ∗|W )(T |W ) = (T |W )∗(T |W ).

6.4.8 First we need to prove Ex 5.4.24: if T is a diagonalizable operator on
V (finite dimensional), then T |W is diagonalizable for any T -invariant
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subspace W . Pf: If T is diagonalizable, then V is a direct sum of the
eigenspaces of T . So given (a basis element of W) v ∈ W we can write
it as a linear comination of distinct eigenvectors v = a1v1 + . . . + akvk.
By Midterm problem 4 (and a simple induction argument), we have that
that each of these vk ∈ W . Thus the set of all such vk span W , and
so by the Replacement Theorem, we can pick a basis for W among the
vk. These are all eigenvectors of T and therefore also eigenvectors of
T |W . Thus this basis is in fact a basis of eigenvectors, and so T |W is
diagonalizable. [done with pf]. Now to prove the problem: assume that
W is T -invariant, and that T is a normal operator on a finite dimensional
complex inner product space. Since T is normal, T is diagonalizable. From
the lemma above, T |W is also diagonalizable, and we therefore get a basis
of W consisting of eigenvectors. By theorem 6.15, an eigenvector of T |W is
also an eigenvector of T ∗|W , and so each eigenspace is also an eigenspace
for T ∗|W . Since eigenspaces are invariant subspaces, we have that W is
T ∗-invariant.

6.4.9 Theorem 6.15 gives ‖Tx‖ = ‖T ∗x‖. Thus, x ∈ N(T )⇔ ‖T ∗x‖ = ‖Tx‖ =
‖0‖ = 0. As inner products are positive definite, this happens precisely
when T ∗x = 0 – i.e. when x ∈ N(T ∗). Thus we have N(T ) = N(T ∗).
By Ex 6.3.12, we have that R(T ∗)⊥ = N(T ). Since, T is an operator on a
finite dimensional inner product space, we get that R(T ∗) = R(T ∗)⊥⊥ =
N(T )⊥. But, by the first part of this problem, N(T )⊥ = N(T ∗)⊥ =
R(T ∗∗) = R(T ). Thus R(T ∗) = R(T ).

6.4.12 One way to approach this problem is to apply Shur’s theorem to get a
basis β in which [T ]β is upper-triangular, and proof of theorem 6.16 works
verbatim.

6.4.22(b) We assume that 〈x, y〉′ = 〈Tx, y〉 is an inner product. First we show that T
is positive definite w/r/t the standard inner product: 〈Tx, x〉 = 〈x, x〉′ ≥ 0
because we’re assuming 〈·, ·〉′ is an inner-product (and is therefore positive
definite). We now show that T is positive definite w/r/t the inner product
defined in the problem: 〈Tx, x〉′ = 〈T 2x, x〉 = 〈Tx, Tx〉 ≥ 0. The second
equality used that T is self-adjoint (w/r/t the standard inner-product),
which we must now prove. 〈Tx, y〉 = 〈x, y〉′ = 〈y, x〉′ = 〈Ty, x〉 = 〈x, Ty〉
– Thus T = T ∗.

6.5.1 (a) T (b) F (c) F (d) T (e) F (f) T (g) F (h) F (i) F

6.5.2(a) A is self-adjoint and is therefore unitarily diagonalizable (and so the
change of basis matrix that takes A to D will be unitary). A has eigen-
values λ = −1, 3. The (unit length) eigenvector corresponding to −1
is ( 1√

2
,− 1√

2
). The eigenvector corresponding to 3 is ( 1√

2
, 1√

2
). P =(

1√
2

1√
2

− 1√
2

1√
2

)
. While D =

(
−1 0
0 3

)
.
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6.5.2(e) A is self-adjoint (and thus normal) and so is unitarily diagonalizable. A
has eigenvalues λ = 8,−1. The unit length eigenvector corresponding to
8 is ( 1√

3
, 1+i√

3
), while the eigenvector corresponding to −1 is (− 2√

6
, 1+i√

6
).

Thus P =

(
1√
3
− 2√

6
1+i√

3
1+i√

6

)
, while D =

(
8 0
0 −1

)
6.5.5 (a) These are NOT unitarily equivalent, as they have different eigenvalues.

(b) These are NOT unitarily equivalent, as they have different eigenvalues.
(c) These are NOT unitarily equivalent, as they have different eigenvalues.

(d)

 0 1 0
−1 0 0
0 0 1

 is normal and thus unitarily equivalent to a diagonal

matrix. Furthmore, as the two matrice’s eigenvalues coincide, the diagonal

matrix is the matrix

1 0 0
0 i 0
0 0 −i

. Thus the two matrices are unitarily

equivalent. (e) These are NOT unitarily equivalent. The first matrix is
not self-adjoint, and is therefore not unitarily equivalent to a real diagonal
matrix – while the second matrix is a real diagonal matrix.

6.5.10 Since A is real-symmetric or complex-normal, we know that A is diag-
onalizable. i.e. A = PDP−1 where Dij = 0 if i 6= j and Dii = λi,
where λi are the eigenvalues of A. Thus we have tr(A) = tr(PDP−1) =
tr(DP−1P ) = tr(D) =

∑
λi. Next (remembering that P ∗ = P−1) we

have A∗ = (PDP ∗)∗ = PD∗P−1. tr(A∗A) = tr(PD∗P−1PDP−1) =
tr(D∗D) =

∑
|λi|2.

6.5.15 (a)We have that U(W ) ⊆ W because W is an invariant subspace. How-
ever, U is unitary, and therefore invertible, so N(U |W ) = {0} and so
Rank(U |W ) = dimW – which implies that U(W ) = W .
(b) Suppose that v ∈ W⊥ (so 〈v, w〉 = 0 ∀w ∈ W ). We have 〈Uv,w〉 =
〈v, U∗w〉 = 〈v, U−1〉 = 0 because U restricts to an invertible operator on
W (with (U−1)|W = (U |W )−1, by 6.4.7(c)) and so U−1w ∈ W . Thus
Uv ∈W⊥.

6.5.16 Let V the inner product space of double infinite sequences with only a
finite number of nonzero terms. i.e. V = {(. . . , σ(k), σ(k+1), . . .); σ(k) =
0 for all but a finite number of k} with inner product given by 〈σ, µ〉 =∑
k∈Z σ(k)µ(k). Let T (σ)(k) = σ(k + 1) be the left shift operator. T is

an isometry and is surjective, so is therefore unitary. Fix a number N ,
and consider the invariant subspace W = {σ; σ(k) = 0 ∀n ≥ N}. We
calculate W⊥ using the following basis for W : {ei}i≤N where ei(k) = δik.
So if σ ∈ W⊥, then 0 = 〈σ, ei〉 = σ(i), ∀i ≤ N . Since this condition is
also sufficient to be in W⊥, we see W⊥ = {σ; σ(k) = 0 ∀k ≤ N}. This is
NOT invariant under left shift. NOTE: compare this example to example
3 on pg 372.
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