
Math 110, Professor Ogus, Homework due 4/11
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6.2.6 Let W ⊆ V and x /∈ W . We can write any w ∈ W in the following way:
w = w+(x−w). According to theorem 6.6, there is a unique such w ∈W
such that (x−w) ∈W⊥. This gives 0 = 〈x−w,w〉 = 〈x,w〉 − 〈w,w〉, i.e.
〈x,w〉 = ‖w‖2. Now

〈x, x− w〉 = 〈x, x〉 − 〈x,w〉 (1)
= 〈x, x〉 − 〈w,w〉 (2)
= ‖x‖2 − ‖w‖2 (3)
= ‖x− w‖2 > 0 (4)

Where the last equality holds by the Pythagorean Theorem, and the in-
equality holds because inner products are positive definite (and x /∈ W ).
Thus, taking y = x− w yields the result.

6.2.7 (⇒) if z ∈W⊥ then 〈z, v〉 = 0 ∀v ∈ β as each v ∈W .
(⇐) Let w ∈ W and write w =

∑
aivi. Now, 〈z, w〉 = 〈z,

∑
aivi〉 =∑

āi〈z, vi〉 =
∑
āi · 0 = 0, where we deduce 〈z, vi〉 = 0 by hypothesis.

Thus z ∈W⊥, as desired.

6.2.9 IfW = span{(i, 0, 1)} ⊆ C3, then an orthonormal basis forW is { 1√
2
(i, 0, 2)}.

For finding an orthonormal basis of W⊥, we need to find 2 orthogo-
nal unit vectors that satisfy 〈x, y, z〉 · 〈i, 0, 1〉 = 0. One can notice that
{ 1√

2
(1, 0,−i), (0, 1, 0)} works.

6.2.10 Fix a basis β = {v1, . . . , vk}, for W and define T (y) =
∑
〈y, vi〉vi. T is

linear, as it sends basis elements to basis elements, and is a projection by
theorem 6.6. Again, by theorem 6.6, each vector y ∈ V can be uniquely
written as y = T (y) + z, where T (y) ∈W and z ∈W⊥. Thus we see that
T (y) = 0 iff y ∈W⊥ i.e. N(T ) = W⊥.
Lastly, we again use the decomposition y = T (y) + z to obtain ‖T (y)‖2 ≤
‖T (y)‖2 + ‖z‖2 = ‖T (y) + z‖2 = ‖y‖2, where the middle equality follows
from the Pythagorean theorem. Taking square roots gives the result.

6.2.19(a) GivenW = {(x, y) ∈ R2; y = 4x}, an orthonormal basis forW is { 1√
17

(1, 4)}.
From the previous problem, the orthogonal projection is T (u) =

∑
〈u, vi〉vi.

Thus T (u) = 〈u, v〉v = 〈(2, 6), 1√
17

(1, 4)〉 1√
17

(1, 4) = 1√
17

(2+24)( 1√
17

(1, 4)) =
( 26
17 ,

104
17 ).

6.2.19(b) An orthonormal basis for W = P1(R) is {1, 2
√

3(x − 1
2 )} (see previous

HW). Thus the projection is T (h) = 〈h(x), 2
√

3(x − 1
2 )〉(2

√
3)(x − 1

2 ) +
〈h(x), 1〉1. We calculate 〈h(x), 2

√
3(x − 1

2 )〉 = 2
√

3
∫ 1

0
(x − 1

2 )(4 + 3x −

1



2x2)dx =
√

3
6 , and 〈h(x), 1〉 =

∫ 1

0
4 + 3x − 2x2 = 29

3 . The projection is
therefore equal to (

√
3

6 )(2
√

3(x− 1
2 )) + 29

6 = x− 13
3

6.2.20 (a) By the corollary to theorem 6.6, the distance is ‖T (u)−u‖ = ‖( 26
17 ,

104
17 )−

(2, 6)‖ = 2√
17

(b) As above, the distance is ‖T (h)− h‖. . .

6.2.30 (a) That 〈σ1 + cσ2, µ〉 = 〈σ1, µ〉 + c〈σ2, µ〉, follows from the field axioms
(in particular, associativity of multiplication and the distributive law).
Next, we see 〈σ, µ〉 =

∑
σ(n)µ(n) =

∑
σ(n)µ(n) =

∑
µ(n)σ(n) = 〈µ, σ〉.

Lastly, we check that it’s positive definite: 〈σ, σ〉 =
∑
σ(n), σ(n) =∑

|σ(n)|2 > 0 exactly when σ 6= 0.
(b) 〈ei, ej〉 =

∑
δikδjk = δij and so the {ei} form an orthonomal set. Fur-

thermore, they form a basis, as any sequence σ can be uniquely written
as
∑
σ(n)en.

(c) Define σn = e1 + en and W = span({σn;n ≥ 2}). First we show that
e1 /∈ W . Suppose, for the sake of contradiction, that e1 ∈ W . Then we
can find scalars ai with i ≥ 2 such that e1 =

∑
aiσi =

∑
ai(ei + ei) =∑

aie1+
∑
aiei. Rearranging the terms we get (

∑
(ai−1))e1+

∑
aiei = 0

– as the {ei} are linearly independent, the ai must all be zero, contradict-
ing that

∑
ai − 1 = 0. Thus W 6= V . Now we show that W⊥ = {0}: if

〈σn, µ〉 = 0 ∀n ∈ N , then
∑

(e1 + en)(k)µ(k) = 0. i.e.
∑

k e1(k)µ(k) =
−
∑

k en(k)µ(k). This holds for every n exactly when µ(1) = −µ(n)
∀n ∈ N . Such a µ is an element of W iff µ(n) = 0 ∀n ∈ N (otherwise,
the sequence would have infinitely many nonzero terms). Thus W⊥ = {0}
and so (W⊥)⊥ = {0}⊥ = V 6= W .
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6.3.2(b) We want find (y1, y2) such that z1− 2z2 = g(z1, z2) = 〈(z1, z2), (y1, y2)〉 =
z1y1 + z2y2. We see that (1,−2) works.

6.3.3(a) We see that with respect to the standard basis, [T ] =
(

2 1
1 −3

)
, which is

equal to its conjugate transpose. We have that [T ∗] = [T ]∗ = [T ] and so
the operator is self-adjoint.

6.3.3(b) With respect to the standard basis, [T ] =
(

2 i
1− i 0

)
and so [T ∗] = [T ]∗ =(

2 1 + i
−i 0

)
. Thus, we see T (z1, z2) = (2z1 + (1 + i)z2,−iz1)

6.3.6 Given U1 = T +T ∗, we calculate U∗1 = (T +T ∗)∗ = T ∗+T ∗∗ = T ∗+T =
T + T ∗ = U1

Given U2 = TT ∗ we calculate U∗2 = (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗ = U2.

6.3.9 If V = WW⊥ and T is the projection on W along W⊥, we see that T |W =
Id and T |W⊥ = 0. So if we choose a basis for V , β = {v1, . . . , vk, w1, . . . , wm}
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where {vi} is a basis for W and {wi} is a basis for W⊥. Then we see

[T ] =
(
Ik 0
0 0

)
, which is self-adjoint. Therefore, by Thm 6.10, T is self-

adjoint.

6.3.10 (⇐) This follows from taking x = y.
(⇒) We use the polar identity:

〈x, y〉 =
1
4

4∑
k=1

ik‖x+ iky‖2 (5)

=
1
4

∑
ik‖T (x) + ikT (y)‖2 (6)

=
1
4

∑
ik〈T (x) + ikT (y), T (x) + ikT (y)〉 (7)

=
1
4

∑
ik(‖T (x)‖2 + ‖T (y)‖2 + 2<〈T (x), ikT (y)〉) (8)

=
1
4

∑
2<〈T (x), ikT (y)〉 (9)

= 〈T (x), T (y)〉 (10)

Where we go from (5) to (6) using the hypothesis, and (6) to (7) by the
definition of the norm. If you’re having trouble going from (9) to (10),
write 〈T (x), T (y)〉 = a+ ib (so <〈T (x), T (y)〉 = a and =〈T (x), T (y)〉 = b)
and write out each of the terms of the sum in terms of a and b. . .

6.3.12(a) Pick x ∈ R(T ∗)⊥, then ∀T ∗y ∈ R(T ∗) we have 0 = 〈x, T ∗y〉 = 〈Tx, y〉.
Since this holds for all y, we can take y = Tx to get 〈Tx, Tx〉 = 0. Thus
Tx = 0 and so x ∈ N(T ). Now, pick x ∈ N(T ). Then 0 = 〈Tx, y〉 =
〈x, T ∗y〉 ∀y, i.e. x ∈ R(T ∗)⊥.

6.3.12(b) This follows immediately from the proposition that states: if W is a finite
dimensional subspace of an inner product space, then (W⊥)⊥ = W . Proof:
pick x ∈ W , then it’s immediate that 〈x, y〉 = 0 ∀y ∈ W⊥, and thus
x ∈ (W⊥)⊥. Now, Suppose x ∈ (W⊥)⊥. Now if x /∈ W , 6.2.6 gives
the existence of a y ∈ W⊥ such that 〈x, y〉 6= 0 – i.e. x /∈ (W⊥)⊥, a
contradiction.

6.3.13(a) That N(T ) ⊆ N(T ∗T ), follows from the fact that T (0) = 0. We now
prove N(T ∗T ) ⊆ N(T ): pick x ∈ N(T ∗T ), so Tx ∈ N(T ∗) = R(T )⊥.
Thus ∀v ∈ V we have 〈Tx, Tv〉 = 0. Taking v = x we get 〈Tx, Tx〉 = 0 –
i.e. Tx = 0.
Now since the nullspaces are equal, it follows that their nullities are equal.
Thus, by the dimension theorem, their Ranks are equal.

6.3.13(b) Note thatR(T ∗) = N(T )⊥ and soRk(T ∗) = dim(N(T )⊥) = n−dimN(T ) =
Rk(T ). The second equality follows from Theorem 6.7(c), and the third
equality is the dimension theorem. Thus we have thatRk(TT ∗) = Rk((T ∗)∗T ∗) =
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Rk(T ∗) = Rk(T ) = Rk(T ∗T ). The second and fourth equalities are from
part (a).

6.3.13(c) This follows immediately from Rk(LA) = Rk(A) and [L∗A] = A∗.
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