Math 110, Professor Ogus, Homework due 4/11

- 6.2.1 (a)F (b)T (c) T (d) F (e) F (f) F (g) F (h) T
- 6.2.6 Let $W \subseteq V$ and $x \notin W$. We can write any $w \in W$ in the following way: w = w + (x - w). According to theorem 6.6, there is a unique such $w \in W$ such that $(x - w) \in W^{\perp}$. This gives $0 = \langle x - w, w \rangle = \langle x, w \rangle - \langle w, w \rangle$, i.e. $\langle x, w \rangle = ||w||^2$. Now

$$\langle x, x - w \rangle = \langle x, x \rangle - \langle x, w \rangle \tag{1}$$

$$= \langle x, x \rangle - \langle w, w \rangle \tag{2}$$

$$= \|x\|^2 - \|w\|^2 \tag{3}$$

 $= ||x - w||^2 > 0 \tag{4}$

Where the last equality holds by the Pythagorean Theorem, and the inequality holds because inner products are positive definite (and $x \notin W$). Thus, taking y = x - w yields the result.

- 6.2.7 (\Rightarrow) if $z \in W^{\perp}$ then $\langle z, v \rangle = 0 \ \forall v \in \beta$ as each $v \in W$. (\Leftarrow) Let $w \in W$ and write $w = \sum a_i v_i$. Now, $\langle z, w \rangle = \langle z, \sum a_i v_i \rangle = \sum \overline{a_i} \langle z, v_i \rangle = \sum \overline{a_i} \cdot 0 = 0$, where we deduce $\langle z, v_i \rangle = 0$ by hypothesis. Thus $z \in W^{\perp}$, as desired.
- 6.2.9 If $W = span\{(i, 0, 1)\} \subseteq C^3$, then an orthonormal basis for W is $\{\frac{1}{\sqrt{2}}(i, 0, 2)\}$. For finding an orthonormal basis of W^{\perp} , we need to find 2 orthogonal unit vectors that satisfy $\langle x, y, z \rangle \cdot \langle i, 0, 1 \rangle = 0$. One can notice that $\{\frac{1}{\sqrt{2}}(1, 0, -i), (0, 1, 0)\}$ works.
- 6.2.10 Fix a basis $\beta = \{v_1, \ldots, v_k\}$, for W and define $T(y) = \sum \langle y, v_i \rangle v_i$. T is linear, as it sends basis elements to basis elements, and is a projection by theorem 6.6. Again, by theorem 6.6, each vector $y \in V$ can be uniquely written as y = T(y) + z, where $T(y) \in W$ and $z \in W^{\perp}$. Thus we see that T(y) = 0 iff $y \in W^{\perp}$ i.e. $N(T) = W^{\perp}$. Lastly, we again use the decomposition y = T(y) + z to obtain $||T(y)||^2 \le$ $||T(y)||^2 + ||z||^2 = ||T(y) + z||^2 = ||y||^2$, where the middle equality follows from the Pythagorean theorem. Taking square roots gives the result.
- 6.2.19(a) Given $W = \{(x, y) \in \mathbb{R}^2; y = 4x\}$, an orthonormal basis for W is $\{\frac{1}{\sqrt{17}}(1, 4)\}$. From the previous problem, the orthogonal projection is $T(u) = \sum \langle u, v_i \rangle v_i$. Thus $T(u) = \langle u, v \rangle v = \langle (2, 6), \frac{1}{\sqrt{17}}(1, 4) \rangle \frac{1}{\sqrt{17}}(1, 4) = \frac{1}{\sqrt{17}}(2+24)(\frac{1}{\sqrt{17}}(1, 4)) = (\frac{26}{17}, \frac{104}{17})$.
- 6.2.19(b) An orthonormal basis for $W = P_1(R)$ is $\{1, 2\sqrt{3}(x-\frac{1}{2})\}$ (see previous HW). Thus the projection is $T(h) = \langle h(x), 2\sqrt{3}(x-\frac{1}{2})\rangle(2\sqrt{3})(x-\frac{1}{2}) + \langle h(x), 1\rangle$ 1. We calculate $\langle h(x), 2\sqrt{3}(x-\frac{1}{2})\rangle = 2\sqrt{3}\int_0^1 (x-\frac{1}{2})(4+3x-1)\langle h(x), 2\sqrt{3}(x-\frac{1}{2})\rangle$

 $2x^2)dx = \frac{\sqrt{3}}{6}$, and $\langle h(x), 1 \rangle = \int_0^1 4 + 3x - 2x^2 = \frac{29}{3}$. The projection is therefore equal to $(\frac{\sqrt{3}}{6})(2\sqrt{3}(x-\frac{1}{2})) + \frac{29}{6} = x - \frac{13}{3}$

- 6.2.20 (a) By the corollary to theorem 6.6, the distance is $||T(u)-u|| = ||(\frac{26}{17}, \frac{104}{17}) (2, 6)|| = \frac{2}{\sqrt{17}}$
 - (b) As above, the distance is ||T(h) h||. . .
- 6.2.30 (a) That $\langle \sigma_1 + c\sigma_2, \mu \rangle = \langle \sigma_1, \mu \rangle + c \langle \sigma_2, \mu \rangle$, follows from the field axioms (in particular, associativity of multiplication and the distributive law). Next, we see $\overline{\langle \sigma, \mu \rangle} = \overline{\sum \sigma(n)\mu(n)} = \sum \overline{\sigma(n)\mu(n)} = \sum \mu(n)\overline{\sigma(n)} = \underline{\langle \mu, \sigma \rangle}$. Lastly, we check that it's positive definite: $\langle \sigma, \sigma \rangle = \sum \sigma(n), \overline{\sigma(n)} = \sum |\sigma(n)|^2 > 0$ exactly when $\sigma \neq 0$.

(b) $\langle e_i, e_j \rangle = \sum \delta_{ik} \delta_{jk} = \delta_{ij}$ and so the $\{e_i\}$ form an orthonomal set. Furthermore, they form a basis, as any sequence σ can be uniquely written as $\sum \sigma(n)e_n$.

(c) Define $\sigma_n = e_1 + e_n$ and $W = span(\{\sigma_n; n \ge 2\})$. First we show that $e_1 \notin W$. Suppose, for the sake of contradiction, that $e_1 \in W$. Then we can find scalars a_i with $i \ge 2$ such that $e_1 = \sum a_i \sigma_i = \sum a_i (e_i + e_i) = \sum a_i e_1 + \sum a_i e_i$. Rearranging the terms we get $(\sum (a_i - 1))e_1 + \sum a_i e_i = 0$ – as the $\{e_i\}$ are linearly independent, the a_i must all be zero, contradicting that $\sum a_i - 1 = 0$. Thus $W \neq V$. Now we show that $W^{\perp} = \{0\}$: if $\langle \sigma_n, \mu \rangle = 0 \ \forall n \in N$, then $\sum (e_1 + e_n)(k)\overline{\mu(k)} = 0$. i.e. $\sum_k e_1(k)\mu(k) = -\sum_k e_n(k)\overline{\mu(k)}$. This holds for every n exactly when $\mu(1) = -\mu(n)$ $\forall n \in N$. Such a μ is an element of W iff $\mu(n) = 0 \ \forall n \in N$ (otherwise, the sequence would have infinitely many nonzero terms). Thus $W^{\perp} = \{0\}$ and so $(W^{\perp})^{\perp} = \{0\}^{\perp} = V \neq W$.

$$6.3.1$$
 (a)T (b)F (c) F (d) T (e) F (f) T (g) T

- 6.3.2(b) We want find (y_1, y_2) such that $z_1 2z_2 = g(z_1, z_2) = \langle (z_1, z_2), (y_1, y_2) \rangle = z_1 \overline{y_1} + z_2 \overline{y_2}$. We see that (1, -2) works.
- 6.3.3(a) We see that with respect to the standard basis, $[T] = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$, which is equal to its conjugate transpose. We have that $[T^*] = [T]^* = [T]$ and so the operator is self-adjoint.
- 6.3.3(b) With respect to the standard basis, $[T] = \begin{pmatrix} 2 & i \\ 1-i & 0 \end{pmatrix}$ and so $[T^*] = [T]^* = \begin{pmatrix} 2 & 1+i \\ -i & 0 \end{pmatrix}$. Thus, we see $T(z_1, z_2) = (2z_1 + (1+i)z_2, -iz_1)$
 - 6.3.6 Given $U_1 = T + T^*$, we calculate $U_1^* = (T + T^*)^* = T^* + T^{**} = T^* + T = T + T^* = U_1$ Given $U_2 = TT^*$ we calculate $U_2^* = (TT^*)^* = (T^*)^*T^* = TT^* = U_2$.
 - 6.3.9 If $V = WW^{\perp}$ and T is the projection on W along W^{\perp} , we see that $T|_W = Id$ and $T|_{W^{\perp}} = 0$. So if we choose a basis for $V, \beta = \{v_1, \ldots, v_k, w_1, \ldots, w_m\}$

where $\{v_i\}$ is a basis for W and $\{w_i\}$ is a basis for W^{\perp} . Then we see $[T] = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$, which is self-adjoint. Therefore, by Thm 6.10, T is self-adjoint.

6.3.10 (\Leftarrow) This follows from taking x = y.

 (\Rightarrow) We use the polar identity:

$$\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k ||x + i^k y||^2$$
 (5)

$$= \frac{1}{4} \sum_{k=1}^{\infty} i^{k} \|T(x) + i^{k} T(y)\|^{2}$$
(6)

$$= \frac{1}{4} \sum i^k \langle T(x) + i^k T(y), T(x) + i^k T(y) \rangle \tag{7}$$

$$= \frac{1}{4} \sum_{i} i^{k} (\|T(x)\|^{2} + \|T(y)\|^{2} + 2\Re \langle T(x), i^{k}T(y) \rangle)$$
(8)

$$= \frac{1}{4} \sum 2\Re \langle T(x), i^k T(y) \rangle \tag{9}$$

$$= \langle T(x), T(y) \rangle \tag{10}$$

Where we go from (5) to (6) using the hypothesis, and (6) to (7) by the definition of the norm. If you're having trouble going from (9) to (10), write $\langle T(x), T(y) \rangle = a + ib$ (so $\Re \langle T(x), T(y) \rangle = a$ and $\Im \langle T(x), T(y) \rangle = b$) and write out each of the terms of the sum in terms of a and b.

- 6.3.12(a) Pick $x \in R(T^*)^{\perp}$, then $\forall T^*y \in R(T^*)$ we have $0 = \langle x, T^*y \rangle = \langle Tx, y \rangle$. Since this holds for all y, we can take y = Tx to get $\langle Tx, Tx \rangle = 0$. Thus Tx = 0 and so $x \in N(T)$. Now, pick $x \in N(T)$. Then $0 = \langle Tx, y \rangle = \langle x, T^*y \rangle \forall y$, i.e. $x \in R(T^*)^{\perp}$.
- 6.3.12(b) This follows immediately from the proposition that states: if W is a finite dimensional subspace of an inner product space, then $(W^{\perp})^{\perp} = W$. Proof: pick $x \in W$, then it's immediate that $\langle x, y \rangle = 0 \ \forall y \in W^{\perp}$, and thus $x \in (W^{\perp})^{\perp}$. Now, Suppose $x \in (W^{\perp})^{\perp}$. Now if $x \notin W$, 6.2.6 gives the existence of a $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$ i.e. $x \notin (W^{\perp})^{\perp}$, a contradiction.
- 6.3.13(a) That $N(T) \subseteq N(T^*T)$, follows from the fact that T(0) = 0. We now prove $N(T^*T) \subseteq N(T)$: pick $x \in N(T^*T)$, so $Tx \in N(T^*) = R(T)^{\perp}$. Thus $\forall v \in V$ we have $\langle Tx, Tv \rangle = 0$. Taking v = x we get $\langle Tx, Tx \rangle = 0$ i.e. Tx = 0. Now since the nullspaces are equal, it follows that their nullities are equal.

Thus, by the dimension theorem, their Ranks are equal.

6.3.13(b) Note that $R(T^*) = N(T)^{\perp}$ and so $Rk(T^*) = dim(N(T)^{\perp}) = n - dimN(T) = Rk(T)$. The second equality follows from Theorem 6.7(c), and the third equality is the dimension theorem. Thus we have that $Rk(TT^*) = Rk((T^*)^*T^*) = Rk(T)^*$

 $Rk(T^*) = Rk(T) = Rk(T^*T)$. The second and fourth equalities are from part (a).

6.3.13(c) This follows immediately from $Rk(L_A) = Rk(A)$ and $[L_A^*] = A^*$.