
Math 110, Professor Ogus, Homework due 3/21

(written by Janak Ramakrishnan)

5.2.18a. We show TU = UT by considering action on elements of β. As β is a basis, this is sufficient. Let

v be an arbitrary element of β. Let λ be the eigenvalue of T corresponding to v, and µ the eigenvalue

of U corresponding to v. Then TUv = T (µv) = µTv = µλv = λµv. UTv = U(λv) = λUv = λµv.

5.2.19. Let β be an ordered basis in which [T ]β is diagonal. By 5.1.15(a), every v ∈ β is an eigenvector of

T m for any m > 0, showing that [T m]β is also diagonal.

5.2.20. We prove the forward direction first. Let βi be a basis of Wi, for 1 ≤ i ≤ k. It is clear that the βi’s

are pairwise disjoint, since Wj ∩
∑

i6=j Wi = {0}, so certainly Wj ∩Wi = {0}. Let α = β1 ∪ . . .∪ βk. It

is clear that |α| =
∑k

i=1
|βi| =

∑k

i=1
dim(Wi), and by Theorem 5.10, α is a basis for V , so dim(V ) =

|α| =
∑k

i=1
dim(Wi).

For the reverse direction, take the same setup of βi’s and α. Once again, it is clear that α spans V ,

and since |α| ≤
∑k

i=1
|βi| =

∑k

i=1
dim(Wi) = dim(V ), α is a basis of V . Now by Theorem 5.10 again,

V =
⊕k

i=1
Wi.

5.2.22. First we show that Span({x ∈ V | x is an eigenvector of T}) =
∑k

i=1
Eλi

. This is clear, since

a vector is in the first space if and only if it is a linear combination of eigenvectors of T , which is

precisely the set of vectors in the second space. Next we show that Eλj
∩

∑

i6=j Eλi
= {0}, for any j.

Fix an arbitrary j, and let v ∈ Eλj
∩

∑

i6=j Eλi
. We will show v = 0. We can write v =

∑

i6=j xi, where

each xi is in Eλi
. Then 0 = −v +

∑

i6=j xi. If any of the vectors on the right side is nonzero, then

we would have a linear combination of eigenvectors which was 0, which is impossible by Theorem 5.5.

Thus, all the vectors must be 0, so v = 0.

5.4.1. (a) F, (b) T, (c) F, (d) F, (e) T, (f) T, (g) T.

5.4.2ace. (a) Yes – T can only decrease the degree of an element of V , and P2(R) is closed downwards with

respect to degree. (c) Yes – T (V ) ⊆ W , so T (W ) ⊆ W . (e) No – T

(

0 1
1 2

)

=

(

1 2
0 1

)

, so T (W ) 6⊆ W .

5.4.4. Since W is a subspace, it is closed under linear combination. Since g(T )(w), for w ∈ W , is a linear

combination of vectors of the form T m(w) for m ≥ 0, we need only show that T m(w) ∈ W for m ≥ 0

and every w ∈ W . Show this by induction on m. For m = 0, T m(w) = w ∈ W . For m = k + 1, we

have T m(w) = T k(T (w)). Since T (w) ∈ W , by induction we know that T k(T (w)) ∈ W , and so we are

done.

5.4.6bd. (b) T (z) = 6x, and T 2(z) = 0. Then {x3, x} is a basis. (d) T (z) =

(

1 1
2 2

)

, and T 2(z) =
(

3 3
6 6

)

= 2

(

1 1
2 2

)

, so

{

z,

(

1 1
2 2

)}

is a basis.
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5.4.9bd. (b) We know that T 2(z) = 0. Thus 0x3 + 0T (x3) + T 2(x3) = 0, so f(t) = (−1)2(t2) = t2.

Computing using the determinant, we have [T ]β =

(

0 0
6 0

)

, so det([T ]β) = t2. (d) −2T (z)+T 2(z) = 0,

so f(t) = t2 − 2t. Computing using the determinant, we have [T ]β =

(

0 0
1 2

)

, so det([T ]β) = t2 − 2t.

5.4.13. The forward direction is clear – w is a linear combination of vectors of the form T m(v), for m ≥ 0.

This linear combination gives g. The reverse is also clear – if w can be written as g(T )(v), then it is a

linear combination of powers of T .

5.4.18. (a) f(t) = det(A − tI). a0 = f(0) = det(A − 0I) = det(A), and det(A) 6= 0 iff A is invertible. (b)

We know that f(A) = 0. Then

(−1)nAn + an−1A
n−1 + . . . + a1A + a0In = 0

(−1)nAn + an−1A
n−1 + . . . + a1A = −a0In. Distributing out an A and dividing by −a0,

A((−1/a0)(−1)nAn−1 + an−1A
n−2 + . . . + a1In) = In. By definition,

A−1 = (−1/a0)(−1)nAn−1 + an−1A
n−2 + . . . + a1In

5.4.20. In the reverse direction, the statement holds for any V , simply because Tg(T ) = g(T )T for any poly-

nomial g. This is because of distributivity and associativity of linear operators, and commutativity of T

with scalar multiples of I. In the forward direction, let v generate V . Then V = Span({v, T v, T 2v, . . .}).

Since Uv ∈ V , we can write Uv as a finite linear combination of vectors in the form T mv, m ≥ 0 –

say Uv = a0v + a1Tv + . . . + akT kv. Let g(t) = a0 + a1t + . . . + aktk. We claim U(w) = g(T )(w) for

any w ∈ V . It suffices to check this for a spanning set, so we can take w = T mv, for m ≥ 0. Note

that, since UT = TU , UT m = T mU , for m ≥ 0, since we can repeatedly apply the identity UT = TU .

Then we have U(T mv) = T m(Uv) = T m(g(T )v) = g(T )(T mv), since g(T ) and T m commute. Thus,

U(w) = g(T )(w) for all w ∈ V , and so U = g(T ).
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