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Out of a stem that scored the hand
I wrung it in a weary land.
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1 Misprints
Page 523, in Theorem 4.2.4, Ω·X/C should be ΩX/k.

Page 467, the reference to [16] should be to [13], and the item [16] should be omitted
from the bibliography. (Thanks to J. Milne)

Page 294, in line 5 of Example 1.7.2, Ii shoud be I′′i , and in line 6, Ii ⊗ OX should be
I′′i → OX′′ . (Thanks to E. Goncharov)

Page 385, line 4 of Variant 2.2.3, T1 should be T . (Thanks to E. Goncharov)

2 Correction to Proposition V.2.1.12
Helge Ruddat has informed me of an example due to Simon Felten [3, Example 7.5]
that implies that statement (2) of Proposition V.2.1.12 and Corollary V.2.3.15 are not
correct as stated. The point of the corollary was to show that, if X is a smooth log
scheme over a regular ring R with trivial log structure, then our definition of the com-
plex Ω·X/R agrees with the complex j∗Ω·U/R, where j : U → X is the inclusion of the
regular locus of X/R; the latter is the complex considered by Danilov in his pioneer-
ing work [2]. As it turns out this is true if R is flat over Z, but not in general. It
appears that each of the two constructions has its own advantages and disadvantages.
For example, our construction commutes more often with base change (see Proposi-
tion V.2.3.26). On the other hand, our sheaves may not be reflexive, and the pairing
Ωi

X/R ⊗ Ωn−i
XR → Ωn

X/R (where n := dim X/R) may not be perfect, in contrast to the
sheaves considered by Danilov [2, 4.7]. Both constructions admit a Cartier isomor-
phism; see Proposition V.4.1.3 and [1].

Example 2.0.1. Let Q be the monoid given by generators a, b, c satisfying the relation
a + b = 2c. This monoid is fine and saturated, and its facets F1 and F2 are the sub-
monoids generated by a and b respectively. Thus Fgp

1 ∩ Fgp
2 = {0}, but in Qgp ⊗ F2,

a = b so (Fgp
1 ⊗ F2) ∩ (Fgp

2 ⊗ F2) = Fgp
1 ⊗ F2. Recall from Definition V.2.3.4 that Ω1

Q/R
is the Q-graded submodule of R[Q] ⊗ Qgp which in degree q is R ⊗ 〈q〉gp. On the other
hand, as is explained in the course of the proof of Proposition V.2.3.13 and in [2, 4.3],
Ω1

U/R(U) is the Q-graded submodule of R[Q] ⊗ Qgp which in degree q is the intersec-
tion of the submodules R ⊗ Fgp as F ranges over the facets of Q containing q. Thus if
R = F2, we find that, in degree 0, Ω1

Q/R,0 = 0 while Ω1
U/R(U) = Fgp

1 ⊗ R = Fgp
2 ⊗ R.

As the paper [3] explains in Lemma 7.6 and Corollary 7.9, an “elementary exercise
in Tor groups” shows that the difficulty disappears in sufficiently large characteristics,
depending on the log scheme in question. As a penance, we carry out this exercise with
an attempt to make this dependence more explicit.
Lemma 2.0.2. Let E be a finitely generated free abelian group, let T be a finite set
of subgroups of E, and for each subset S of T , let HS := ∩{H : H ∈ S } and TS :=
{HS ∩ H : H ∈ T }. Finally, let N be the product of all the primes dividing the orders of
the torsion subgroups of the groups HS /(H1 + H2), as (H1,H2) ranges over the set of
pairs of elements of TS , for all S ⊆ T . Then if R is a ring such that TorZ

1 (R,Z/NZ) = 0,
the following conclusions hold.
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1. For every H ∈ T , the natural map R ⊗ H → R ⊗ E is injective.

2. For every S ⊆ T , the natural map:

aS : R ⊗ HS → (R ⊗ H)S := ∩{R ⊗ H : H ∈ S } ⊆ R ⊗ E

is an isomorphism.

3. Suppose also that each E/H for H ∈ S has rank one. Then for every i and every
H ∈ S , the natural map R ⊗ ΛiH → R ⊗ ΛiE is injective, and for every S ⊆ T ,
the natural map

aS ,i : R ⊗ ΛiHS → ∩{R ⊗ ΛiH : H ∈ S }

is an isomorphism.

Proof. Our hypothesis implies that TorZ
1 (R,Z/pZ) = 0 for every p dividing N and

then that TorZ
1 (R,HS /(H1 + H2)) = 0 for every S ⊆ T and every (H1,H2) ∈ TS × TS .

Observe that for every S ⊆ T , the family TS of subgroups of ES := HS enjoys the same
property as the family T of subgroups of E and that H∅ = E and T∅ = T . In particular,
TorZ

1 (E/H,R) = 0 for every H ∈ T , so the map R⊗H → R⊗E is injective. This proves
(1), and in particular, it makes sense to write ∩{R ⊗ H : H ∈ S } ⊆ R ⊗ E. The natural
map R ⊗ HS → R ⊗ H factors through ∩{R ⊗ H : H ∈ S }, inducing the “natural map”
aS in the statement. We shall prove that this map is an isomorphism by induction on
the cardinality of S . If |S | = 1, the result is clear, since we already know that each
R ⊗ H → R ⊗ E is injective. If |S | = 2 and S = {H1,H2}, we consider the following
diagram:

0 - R ⊗ (H1 ∩ H2) - R ⊗ (H1 ⊕ H2) - R ⊗ (H1 + H2) - 0

0 - (R ⊗ H1) ∩ (R ⊗ H2)

aS

?
- R ⊗ H1 ⊕ R ⊗ H2

�

?
- R ⊗ H1 + R ⊗ H2

?
- 0

The bottom sequence is exact by inspection, the top sequence is exact because H1 + H2
is a free abelian group, and it follows that aS is injective. Then the snake lemma implies
that the cokernel of aS is isomorphic to the kernel of the right vertical arrow, which is
TorZ

1 (R, E/(H1 + H2)) = 0.
For the induction step, choose some element E′ of S and let S ′ := {H′ := H ∩ E′ :

H ∈ S \ {E′}}. Consider the diagram:

R ⊗ H′S ′
aS ′ - ∩{(R ⊗ H′ : H′ ∈ S ′}

R ⊗ HS

? aS- ∩{R ⊗ H ∩ R ⊗ E′ : H ∈ S \ {E′}}
?
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Here the intersection in the top right corner is taken in R ⊗ E′ and the intersection on
the bottom right in R ⊗ E; since R ⊗ E′ ⊆ R ⊗ E this distinction is vacuous. Since the
collection T ′ := {H ∩ E′ : H ∈ T } of subgroups of E′ satisfies the hypotheses of the
lemma and |S ′| < |S |, the induction hypothesis implies that a′S ′ is an isomorphism. By
the case n = 2, the right vertical arrow is an isomorphism, and the left vertical arrow
is trivially an isomorphism—in fact an equality. It follows that the bottom horizontal
arrow is an isomorphism, proving conclusion (2) of the lemma.

We prove statement (3) by induction on i. The case i = 1 is covered by statement
(2). Let us explain the induction step when S = {H1,H2}; in what follows we write
H1,2 for H1 ∩ H2. Since H2 → E → E/H2 is a short exact sequence of free abelian
groups and E/H2 has rank one, the Koszul construction gives a short exact sequence:

0→ ΛiH2 → ΛiE → Λi−1H2 ⊗ E/H2 → 0,

and this sequence remains exact after tensoring with R. We get a similar exact sequence
from the corank direct summand H1,2 of H2. Thus each of the maps

R ⊗ Λi(H1,2)→ R ⊗ ΛiH2 and R ⊗ ΛiH2 → R ⊗ ΛiE

is injective, and hence so is their composition. Thus the rows in the diagram:

0 - R ⊗ ΛiH1,2 - R ⊗ ΛiH1 - R ⊗ Λi−1H1,2 ⊗ H1/H1,2 - 0

0 - R ⊗ ΛiH2

?
- R ⊗ ΛiE

?
- R ⊗ Λi−1H2 ⊗ E/H2

?
- 0

are exact, and it will suffice to show that the vertical arrow is injective. This arrow
factors as a composition of arrows:

R ⊗ Λi−1(H1,2) ⊗ H1/H1,2 → R ⊗ Λi−1H2 ⊗ H1/H1,2

R ⊗ Λi−1H2 ⊗ H1/H1,2 → R ⊗ Λi−1H2 ⊗ E/H2

each of which is easily seen to be injective. (The latter because of the vanishing of
TorZ

1 (R ⊗ Λi−1E ⊗ E/(H1 + H2).) �

We can now state a corrected version of statement (2) of Proposition V.2.3.12 and
its Corollary V.2.3.15. We restrict here to the case in which P = 0.
Proposition 2.0.3. Let Q be a fine saturated monoid, let T denote the set of all sub-
groups of Qgp of the form Ggp as G ranges over the facets of Q, and let NQ be the
natural number corresponding to this (finite) set of subgroups of Qgp as described in
Lemma 2.0.2. Suppose that F is a face of Q, that U is the inverse image in AQ of an
open subset of Spec(Q) containing all the height one primes of Q, and that R is a ring
such that TorZ

1 (R,Z/NQZ) = 0. Then the natural map

Ω·Q/R(F)→ Γ(U,Ω·Q/R(F))

is an isomorphism.
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Proof. The proof proceeds as before, with the following argument replacing the origi-
nal version, starting with the last paragraph on page 487:

Each G is a facet of Q, so 〈F,G, q〉 is G if G contains F and q and is Q otherwise.
Thus Lemma 2.3.13 implies that

Γ(U, L0(F)Ω̃i
Q/R)q ⊆

⋂
G

Ωi
Q/R,G,q =

⋂
G⊇〈F,q〉

R ⊗ ΛiGgp.

As we saw in Corollary I.2.3.14, the intersection of the set of all Ggp such that G
contains 〈F, q〉 is just 〈F, q〉gp. Applying statement (3) of Lemma 2.0.2, we see that⋂

G⊇〈F,q〉

R ⊗ ΛiGgp = R ⊗
⋂

G⊇〈F,q〉

ΛiGgp = R ⊗ 〈F, q〉gp = Ωi
Q/R(F). �

Corollary 2.0.4. Let Q be a fine saturated monoid, and let U be the inverse image in
Spec R[Q] of the set of p ∈ Spec Q such that ht p ≤ 1. Assume that the order of the
torsion subgroup of Qgp is invertible in R and that TorZ

1 (R,Z/NQZ) = 0, where NQ as
as in Proposition 2.0.3. Then U is smooth over Spec R, and the natural map

Ω·Q/R � Γ(U,Ω·U/R)

is an isomorphism.

Remark 2.0.5. For example, if Q is a free monoid, then NQ = 1, If Q is the monoid of
example 2.0.1, then NQ = 2, and if Q is the monoid given by a, b, c, d with a+b = c+d
we again NQ = 1. Note also If Q is a toric monoid of rank n and q is an element of
Q \ IQ, then q is contained in some facet G, hence ∩{R ⊗ Ggp : q ∈ G} has rank less
than n, and hence ∩ΛnR ⊗Ggp = 0. It follows that Ωn

Q/R = Γ(U, Ω̃n
U/R).

3 Corrections to section II.2.5
Ofer Gabber has observed that section II,2.5 contains a plethora of serious errors, trig-
gered by two key issues. The first of these is that condition (2) in the Definition 2.5.1 is
not stable under pull-back, and in fact it is not true that every fine log scheme admits a
stratification satisfying these conditions. The second problem is that the cospecializa-
tion maps on page 263 are not well-defined in the generality stated. It is my view that
these issues warrant considerable further study. At present I am only able to address
these difficulties in a superficial manner.

For the sake of clarity, it seems best to replace section II,2.5 with the following
revised version. I am deeply grateful to Gabber for his suggestions.

2.5 Constructibility and coherence
It is possible to give a fairly explicit description of what it means for a sheaf of integral
monoids on a topological space to be coherent.
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Definition 2.5.1. Let E be a sheaf of sets on a topological space X. A trivializing
partition for E is a locally finite partition Π of X into locally closed subsets such that
the restriction of E to each S ∈ Σ is constant. We say that a sheaf E on X is quasi-
constructible if X has a trivializing partition for E.

Remark 2.5.2. Recall that a Kolmogoroff space is a topological space X such that
given any two distinct points x and y of X, either x does not belong to the closure of
y or y does not belong to the closure of x. For example, if Q is a monoid, spec(Q)
is a Kolmogoroff space; it is finite if Q is finitely generated. Every point of a finite
Kolmogoroff space is locally closed, and hence every sheaf on such a space is quasi-
constructible. Furthermore, if f : X → Y is a continuous map and Σ is a trivializing
partition for E on Y , then the family of nonempty members of f −1(Σ) is a trivializing
partition for f −1(E) on X. It follows that every coherent sheaf of monoids admits a
trivializing partition.

Remark 2.5.3. It is often useful for a partition Π to satisfy additional conditions that
one finds in the literature concerning stratifications of topological space. Among these
are the following.

1. Each element of Π is connected.

2. Each point of X admits a system of open neighborhoods whose intersection with
every S ∈ Π is either connected or empty.

3. Each element of Π is irreducible.

4. If T and S are elements of Π and T ∩ S , ∅, then T ⊆ S (the frontier condition).

Note that condition (3), which is mostly relevant for noetherian spaces, implies condi-
tions (1) and (2). If Π is a trivializing parition for a sheaf on X, one can hope to find a
refinement of Π which satisfies some of these additional conditions. For example, if X
and the sets in Π admit compatible triangulizations (in a suitable sense which we shall
not detail here), one should be able to do this for conditions (1), (2), and (4). If X is
noetherian, one can achieve all four conditions, as we shall see in Proposition 2.5.5.

The following lemma may clarify the meaning of the frontier condition (4).
Lemma 2.5.4. Let X be a topological space, let Π be a locally finite partition of X, and
let Σ be the set of subsets of X that can be written as a union of elements of Π. Then
the following conditions are equivalent.

1. The closure of every element of Σ also belongs to Σ.

2. The closure of every element of Π belongs to Σ.

3. The partition Π satisfies the frontier condition: whenever S and T are elements
of Π and T ∩ S , ∅, then T ⊆ S .

Proof. It is obvious that (1) implies (2). Because Π is a partition of X, the set Σ is
closed under intersections, complements, and unions. Suppose that (2) holds and that
S and T are elements of Π. Then T ∩ S belongs to Σ. Since T belongs to the partition
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Π, any subset of T which belongs to Σ is either empty or all of T . Thus condition (2)
implies condition (3). Suppose that Π satisfies (3) and that S ∈ Σ. Let t be a point of S
and let T be the element of Π containing t. Choose a neighborhood U of t which meets
only finitely many elements of Π. Since S ∈ Σ, we can write S ∩U = S ′1 ∪ S ′2 · · · ∪ S ′n
where S 1 · · · S n ∈ Π and S ′i := S i∩U. Then S ∩U = S ∩ U = S ′1∪S ′2∪· · ·∪S

′

n. Since
t ∈ T ∩ S ∩ U, it follows that T ∩ S

′

i , ∅ for some i, and then T ⊂ S ′i ⊆ S . We have
shown that every element of S is contained in an element T of Π which is contained in
S , and hence S is a union of elements of Π. �

Proposition 2.5.5. 1 Let X be a noetherian topological space.

1. If Σ is a finite cover of X by locally closed subsets, then X has a finite partition
Π satisfying conditions (1)–(4) of Remark 2.5.3 such that every element of Σ is
a union of elements of Π.

2. Every finite partition of X by locally closed subsets admits a finite refinement
which satisfies the conditions (1)–(4) of Remark 2.5.3.

Proof. We shall need the following lemma, of which part (3) is key.
Lemma 2.5.6. Let X be a noetherian topological space.

1. X admits a finite partition into irreducible locally closed subspaces.

2. Every finite partition of X by locally closed subsets admits a finite refinement
consisting of irreducible locally closed subsets.

3. Every finite collection F of irreducible closed subsets of X is contained in a
finite collection F̂ of irreducible closed sets which contains the irreducible com-
ponents of the intersection of any two elements of F̂ .

Proof. Statement (1) is trivial if X is irreducible. Since X is noetherian, it is the union
of finitely many irreducible components X1, . . . , Xn, and we can argue by induction on
n. The space X′ := X2 ∪ · · · ∪ Xn has n − 1 irreducible components, and the locally
closed subset X′1 := X1 \ X′ is still irreducible. Since X′ and X′1 are disjoint and the
lemma is true for each of them, it is also true for X. It is clear that statement (1) implies
statement (2). If F is a finite family of irreducible closed subsets of X, let F ′ be the set
of irreducible components of intersections of pairs of elements of F , and consider the
sequence F0 := ∅,F1 := F and Fn+1 := F ′n for n > 0. Any Z ∈ Fn+1 \ Fn for n0 is an
irreducible component of an intersection of sets A, B in Fn, neither of which contains
the other and at least one of which, say A, does not lie in Fn−1, so Z ( A ∈ Fn \ Fn−1.
Then Zn := ∪{Z ∈ Fn+1 \ Fn} is a closed subset of X, and, since Z ( A ⊆ Zn−1, in fact
Zn ⊆ Zn−1. Since A is irreducible and Z ( A, in fact Z is nowhere dense in A and hence
also in Zn−1. Since Zn is a finite union of all such Z, it too is nowhere dense in Zn−1.
Since X is noetherian, the descending chain Z0,Z1, . . .Zn must terminate. Furthermore,
Zn+1 is nowhere dense in Zn, so the terminal element is empty. Then we can take
F̂ = Fn for n sufficiently large to satisfy the requirements of statement (3). �

1O. Gabber provided key help with the proof of this proposition. In fact his proof shows that “locally
closed ” can be replaced by “constructible,” “noetherian” by “locally noetherian,” and “finite” by “locally
finite.”
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Statement (2) of the proposition is special case of statement (1). Let Σ be a finite
cover of X by locally closed subsets. Replacing Σ by the family of irreducible compo-
nents of its members, we may assume without loss of generality that each element of Σ

is irreducible. Let F be the family of all irreducible components of sets of the form A
or A \ A for A ∈ Σ, and let F̂ be a corresponding family as in statement (3). If S ∈ F̂ ,
let

Ŝ := S \ ∪{T ∈ F̂ : T ( S } = S \ ∪{S ′ ∈ F̂ : S * S ′}.

The latter equality holds because if S and S ′ are distinct elements of F , the irreducible
components of S ∩ S ′ also belong to F . Each of these sets Ŝ is nonempty and irre-
ducible, and Ŝ ∩ Ŝ ′ = ∅ if S , S ′. If x ∈ X, let F̂x be the set of all S ∈ F̂ containing x.
This set is not empty because Σ, and hence F and F̂ , cover X. Since X is noetherian,
the set F̂x has a minimal element S , and then x ∈ Ŝ . This shows that the set Π of
all sets of the form Ŝ : S ∈ F̂ is a partition of X. Moreover, every element T of F̂x

must contain S , since otherwise some irreducible component of T ∩ S will be contain
x, contradicting the minimality of S . This shows that every element of F̂ is a union
of elements of Π. Note that if P ∈ Π, say P = Ŝ with S ∈ F̂ , then S = P, and
consequently P is a union of elements of Π. Thus the partition Π satisfies the frontier
condition. Suppose that a ∈ A ∈ Σ and let P be the element of Π containing a. Since
A ∈ F̂ , in fact P ⊆ A. Since F̂ contains all the irreducible components of A \ A, it is
also true that A \ A is a union of elements of Π, so P ⊂ A. This shows that A is a union
of elements of Π and completes the proof of the proposition. �

The frontier condition (4) is stable under restriction to open subsets, but not under
general pullbacks. As a simple example let X := Spec k[x, y], let Π := {D(x),V(x)},
and let i : X′ → X be the inclusion of the subscheme V(xy). The partition Π satisfies
condition (2), but its pullback Π′ to X′ is {V(y) ∩ D(x),V(x)} which does not. This can
be remedied by replacing Π′ by a refinement, e.g {V(y) ∩ D(x),V(x) ∩ D(y),V(x, y)}.
However, if there are infinitely many irreducible components, such a locally finite re-
finement might not exist, as an example due to Gabber shows.

Example 2.5.7. Let R := k[x1, x2, x3, . . .]/(x1x2, x2x3, x3x4, . . .), let X := Spec R, and
let M → OX be the log structure associated to the prelog structure N → OX taking
1 to x1. Then M is the constant sheaf N on the closed subscheme V(x1) and is the
constant sheaf 0 on its complement D(x1). The partition {V(x1),D(x1)} does not satisfy
condition (2), because V(x1) ∩ D(x1) , ∅ and V(x1) * D(x1) = V(x2). In fact there
is no locally finite partition of X into locally closed sets which satisfies condition (2)
on whichM is constant. Suppose to the contrary that Π is such a partition, and let Σ

denote the set of subsets of X which can be written as unions of elements of Π. Since
M is constant on the elements of Π, the sets D(x1) and V(x1) necessarily belong to Σ.
Condition (2) implies that the closure, interior, and boundary of D(x1) also belong to Σ.
Since ∂D(x1) = V(x1, x2), it also follows that V(x1)\V(x1, x2) = V(x1)∩D(x2) also be-
longs to Σ. Working within V(x1) � Spec k[x2, x3, x4, . . .]/(x2x3, x3x4, . . .), we see that
the argument shows that V(x1, x2, x3) belongs to Σ, and then that V(x1, x2, x3, . . . , xn)
belongs to Σ for every n. Since Π is locally finite, so is Σ, (i.e., every point has a
neighborhood U such that {U ∩ S : S ∈ Σ} is finite), a contradiction.
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Example 2.5.8. Let Q be a toric monoid and let X := AQ(C), endowed with the strong
topology. We claim that the partition of X into the orbits of A∗Q, described in Proposi-
tion I.3.3.4, satisfies conditions (1)–(2) and (4) of Remark 2.5.3. To verify the frontier
condition, suppose that F and G are faces of Q with complementary prime ideals p and
q and that the closure of A∗F meets A∗G. The closure of A∗F is the closed subscheme AF
of AQ defined by the ideal C[p] and A∗G is the locally closed subscheme obtained by
intersecting AQG

with the closed subscheme defined by the ideal C[q]. Thus, if A∗F∩A∗G
is not empty, so is Spec(C[Q]/C[p])G). This implies that G ∩ p = ∅, i.e., that G ⊆ F,
and hence that A∗G ⊆ AF, as required.

To verify conditions (1) and (2) notice that, since Q is toric, Fgp is torsion free for
every face F of Q, so the stratum A∗F is connected. Now let x be a point of AQ; we claim
that x admits a basis of open neighborhoods as in (2). Let G := {q ∈ Q : eq(x) , 0}.
Then AQG

is an open neighborhood of x, so we may replace Q by QG and thus reduce
to the case when G = Q∗. Since Q is saturated, we can write Q � Q ⊕ Q∗ and so
AQ � AQ ×AQ∗ . Then F 7→ F ⊕ Q∗ defines a bijection between the faces of Q and of
Q⊕Q∗, and hence a corresponding bijection between the strata of AQ and of AQ ×AQ∗ .
Since the analytic space attached to AQ∗ is locally connected, we are reduced to the
case in which Q is sharp and x is the vertex of AQ.

Let us now use the notation of §1.10, and in particular we let CQ be the real cone
spanned by Q. This space also admits a stratification by the interiors Co

F of the cones of
the faces of Q. Let h : Q → N be a local homomorphism. The sets Bh(r) := {c ∈ CQ :
h(c) < r} form a basis of open neighborhoods of the vertex 0 ∈ CQ. If F is a face of
Q, let hF be the composition of the projection Q → Q/F with a local homomorphism
Q/F → N. Then h−1

F (0) = CF ⊆ CQ, and

Bh(r) ∩ Co
F = {c ∈ CQ : 0 < h(c) < r} ∩ {c : hF(c) = 0}

is convex, hence connected. This shows that the vertex admits a basis of open neighbor-
hoods whose intersection with each of these strata is connected. Now Theorem 1.10.2
shows that the moment map associated to any set of generators of Q defines a homeo-
morphism from RQ to CQ which is compatible with the stratification by faces. Thus
the vertex v of RQ also has such basis B of open neighborhoods.

Now consider the commutative diagram:

TQ ×RQ

XQ

m

? a - RQ,

pr

-

where m is multiplication and a is the absolute value function. The family of sets
a−1(V) for V ∈ B forms an open neighborhood basis for the vertex x of XQ. If F is a
face of Q, then pr−1(R∗F ∩V) = TQ ×(R∗F ∩V) is connected, and hence its image under
m is also connected. Since the diagram commutes and m is surjective, this image is
a−1(V ∩ R∗F) = a−1(V) ∩ A∗F.
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If X is a sober topological space [31, (0.2.1.1)], every irreducible closed set S
contains a unique generic point σ. If E is a sheaf on X and s ∈ S , there is a natural
cospecialization map

cosps,σ : Es → Eσ,

which is an isomorphism if E is constant on S . Thus in this case we can identify
Γ(S ,E|S ) with Es for every s ∈ S . Since we also want to work in the complex analytic
context, we shall explain a different point of view.

Suppose E is a sheaf on a topological space X and that Π is a trivialization partition
for E satisfying conditions (1), (2), and (4) of Remark 2.5.3. Since each S ∈ Π is
connected and since E|S is constant, the natural map

ES := Γ(S ,E|S )→ Es

is an isomorphism. If t belongs to the closure of S , and V is a neighborhood of t, then
S ∩ V is not empty, and if this set is connected, we have a natural map

E(V)→ E|S (V ∩ S ) � ES .

Since Π satisfies condition (2) of Remark 2.5.3, the point t has a basis of neighborhoods
with this property. Taking the limit over all such V , we find the cospecialization map,:

cospt,S : Et → ES .

If T is the stratum containing t, the map ET → Et is also an isomorphism, so we find
by composition with its inverse a map:

cospT,S : ET → ES .

To show that this map is independent of the choice of t ∈ T , fix a section e of ET , and
for each t′ ∈ T , let et′ be its germ at t′. Let T ′ := {t′ ∈ T : cospt′,S (et′ ) = cospt,S (et)}.
If t′ ∈ T , choose a neighborhood V of t′ satisfying condition (2) and an element eV of
E(V) whose germ at t′ is et′ . Then for every t′′ ∈ V ∩ T , cospt′′,S (et′′ ) is the restriction
of eV to E(V ∩ S ) = ES , since V ∩ T is connected. If t′ belongs to the closure of T ′, we
can choose a point t′′ ∈ V ∩ T ′. Then for every point t′′′ of V ∩ T , we have

cospt′′′,S (et′′′ ) = cospt′′,S (et′′ ) = cospt,S (e).

Thus V ∩ T ⊆ T ′, and it follows that T ′ is open, closed, and nonempty. Since T is
connected, in fact T ′ = T .

Thus, for each pair T, S of elements of Π with T ⊆ S , and for any t ∈ T and s ∈ S ,
we have a cospecialization maps fitting into a commutative diagam:

ET
cospT,S- ES

Et

�

?

cospt,s

-

cospt,S

-

Es.

�

?
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These cospecialization maps satisfy the following cocycle conditions: cospS ,S = id
and, if T ⊆ S − ⊆ R−, then cospT,R = cospT,S ◦ cospS ,R.

We shall say that a point x of X is a central point for Π if x belongs to the closure
of every element of Σ. Any point x of X has a neighborhood U such that x is a central
point for Σ|U : it suffices to take a neighborhood U of x that meets only finitely many
strata and then remove the closures of all the strata whose closures do not contain x.
Proposition 2.5.9. Let E be a sheaf on a topological space X, let Π be a trivializing
partition for E satisfying conditions (1)–(2) and (4) of Remark 2.5.3, and let x be a
point of X.

1. If x is a central point for Π, then the natural map E(X)→ Ex is an isomorphism.

2. Every point x has a neighborhood basis of open sets U such that each map
E(U)→ Ex is an isomorphism.

Proof. Assume that x is a central point for Π. First we prove that the natural map
E(X) → Ex is injective. The central point x belongs to the closure of the stratum
containing every point y, so the map E(X) → Ey factors through the cospecialization
map cospx,y. Thus if two elements e, e′ of E(X) have the same image in Ex, they have
the same image in Ey for every y, and hence must be equal. For the surjectivity, let ex

be an element of Ex. The closure of the stratum containing every point y of X contains
x, so the cospecialization map cospx,y is defined, and we let ey := cospx,y(ex); note that
the definition of ex is unambiguous because cospx,x = id. We claim that there is an
element e of E(X) whose germ at every y is ey. This claim can be verified locally on X.
Given y ∈ Y , we can find an open neighborhood V of y and an element e′ of E(V) such
that e′y = ey. Shrinking V , we may assume that y is a central point of V and that the
restriction of Π to V satisfies conditions (1)–(4). We claim then that e′z = ez for every
z ∈ V . The closure of the stratum containing z also contains x, so cospx,z is defined,
and the cocycle condition tells us that

ez := cospx,z(ex) = cospy,z(cospx,y(ex) = cospy,z(ey) = cospy,z(e
′
y) = e′z.

This completes the proof.
To prove statement (2), observe that if x ∈ X, then there is an open neighborhood

U of x in which x is a central point. This remains true in every smaller open neighbor-
hood, and furthermore the restriction of Π to every open neighborhood still satisfies the
frontier condition (4). If U is chosen so that condition (2) also holds, then statement
(1) implies that the map E(U)→ Ex is an isomorphism.

�

Theorem 2.5.10. An integral sheaf of monoidsM on a topological space X is fine if
it satisfies the following three conditions.

1. X admits an open covering on whichM admits a trivializing partition Π satisfy-
ing conditions (1)–(2) and (4) of Remark 2.5.3.

2. For each x ∈ X, the stalkMx ofM is finitely generated.
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3. Whenever S and T are elements of Π with T ⊆ S , the cospecialization map
cospT,S : MT →MS identifiesMS with the quotient ofMT by a face.

Conversely, every fine sheaf of monoidsM on a noetherian topological space satisfies
these conditions.

Proof. Suppose thatM satisfies the conditions (1) through (3) and let x be a point of X.
Without loss of generality we may assume that x is a central point for the trivializing
partition Σ. SinceMx is finitely generated,Mx admits a markup L →Mgp

x and hence
an exact chart βx : Q → Mx, as explained in in Proposition 2.3.4. Since Q is finitely
generated, Lemma 2.2.4 tells us that, after replacing X by an open neighborhood of x,
we can find a homomorphism β : Q → M whose stalk at x is βx. Then β is a chart for
M at x, which, by Proposition 2.1.4 means that the induced map Q/Fx → Mx is an
isomorphism, where Fx := β−1

x (M∗x). We claim that the same is true for every point y
of X. For any such point we have a commutative diagram

Q/Fx
βx - Mx

Q/Fy

πx,y

? βy - My.

cospx,y

?

By condition (3), cospx,y is the quotient ofMx by a face G, which can only be cosp−1
x,y(0).

Since Fy is by definition the inverse image of 0 in Q, it follows that πx,y is the quotient

of Q/Fx by β
−1
x (G), and hence that βy is also an isomorphism.

Conversely, suppose thatM is fine and that X is noetherian. Shrinking X, we may
apply Corollary 2.3.6 to find a fine chart P → M. Let h : X → S := spec(Q) be
the corresponding map of locally monoidal spaces. Then by Proposition 2.1.4, M �

h−1(MS ). Since S is a finite Kolmogoroff space, MS is quasi-constructible and, by
Remark 2.5.2,M admits a trivializing partition. Proposition 2.5.5 allow us to refine this
into one satisfying properties (1)–(2), and (4) of Remark 2.5.3. Furthermore, properties
(2) and (3) hold forMS , and hence also forM. �

The Theorem 2.5.10 does not apply directly directly when X is a complex analytic
space, since it may not be so easy to find a trivializing partition satisfying (1)–(2) and
(4). One could try to work with partitions by complex analytic sets, in which case
one can adapt the argument of Proposition 2.5.5 to show the existence of refinements
satisfying the frontier condition. However one wants to work locally in the strong
topology, and it becomes difficult to arrange for condition (2). For example, let X be
the subset of C3 defined by the vanishing of zy2−zx2+x3 (see Figure 1.6.2) on page 292
and letM→ OX be the log structure on X associated to the prelog structure N→ x−y.
ThenM is N on the z-axis T is 0 on S := X \ T . This stratification satisfies the frontier
condition but not condition (2), and in fact it has no analytic refinement satisfying (2)
in any neighborhood of the origin.
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Proposition 2.5.11. IfM is a fine sheaf of monoids on a noetherian and sober space
X and U is an open subset of X, then Γ(U,MX) is fine.

Proof. It suffices to treat the case U = X. By Theorem 2.5.10 and Proposition 2.5.9,
every point x admits an open neighborhood Ux such that the mapMX(Ux) → MX,x is
an isomorphism. In particular, MX(Ux) is a fine monoid. Since X is quasi-compact,
there exists a finite set {Ux1 , . . . ,Uxn } of these neighborhoods that covers X. We prove
that Γ(Um,MX) is fine by induction on m, where Um := ∪{Uxi : i ≤ m}. In fact,
Γ(Um,MX) is the fiber product of Γ(Um−1,MX) and Γ(Uxm ,MX) over the integral
monoid Γ(Um−1 ∩ Uxm ,MX), so it is fine by statement (6) of Theorem I.2.17. �
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