Exercises on Log Geometry

Arthur Ogus

November 21, 2016

1. Let k be an algebraicaly closed field, let P be a fine monoid, and let A_P denote the log scheme associated to $P \to k[P]$. Show that if X is any log scheme, there is a natural bijection

$$\operatorname{Mor}(X, \mathsf{A}_{\mathsf{P}}) \cong \operatorname{Hom}(P, \Gamma(X, \mathcal{M}_X)).$$

- 2. Recall that a homomorphism of integral monoids $\theta: P \to Q$ is *locally* exact if for every face G of Q, the homomorphism $P_F \to Q_G$ is exact, where $F := \theta^{-1}(G)$.
 - (a) Give an example of a locally exact homomorphism which is not exact.
 - (b) Give an example of an exact homomorphism which is exact but not locally exact.
 - (c) Give an example of a homorophism which is locally exact but not integral.
- 3. If Q is a fine monoid, we let R_Q denote the set of homomorphisms from the monoid Q to the multiplicative monoid of nonnegative real numbers and let C(Q) denote the real cone generated by Q. Recall that if S is finite set of generators for C(Q) the moment map

$$\mu_s \colon R_Q \to C(Q) : \rho \mapsto \sum_{s \in S} \rho(s)s$$

is a homeomorphism. Prove this by hand in the following cases:

- (a) $Q = \mathbf{N}$ and S is any nonempty finite subset of \mathbf{N}^+ .
- (b) $Q = \mathbf{Z}$ and S is any finite subset of \mathbf{Z} containing at least one positive and one negative number.