Exercises on Log Geometry

Arthur Ogus

November 15, 2016

- 1. Let A be a noetherian local domain with maximal ideal \mathfrak{m} and infinite residue field k. Assume that the dimension of $V := \mathfrak{m}/\mathfrak{m}^2$ is at least two. Prove that the monoid $\overline{A}' := (A \setminus \{0\})/A^*$ of effective divisions of A is not finitely generated. In particular, conclude that if A has dimension one and is not regular, then \overline{A}' is not finitely generated. Hint: Consider the mapping $\overline{A}' \to (A/\mathfrak{m}^2)/A^*$ and the irreducible elements of the monoid \overline{A}' .
- 2. Let P be a (commutative) monoid and let S be a P-set. Suppose that S satisfied the following condition: * If $p \in P$ and $s \in S$ with p+s=s, then p is a unit. Prove that if S is finitely generated as a P-set and satisfies *, then it is generated by $S \setminus (P^+S)$. (Nakayama's lemma for P-sets.). Give examples showing that the hypotheses * and finite generation are not superfluous. Extra bonus question: Find a good terminology for the condition *.
- 3. Let $Q_{2,2}$ be the monoid with generators q_1, q_2, q_3, q_4 and relation $q_1 + q_2 = q_3 + q_4$. Then $H(Q_{2,2}) := \text{Hom}(Q_{2,2}, \mathbf{N})$ is in a natural way embedded in \mathbf{N}^4 . Find the minimal set of generators of $H(Q_{2,2}) \subseteq \mathbf{N}^4$.