The Nygaard filtration of a strict Dieudonné
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Our aim here is to give a brief account of some of the essential features of
the construction of the Nygaard filtration as discussed in [1]. We also explain
its application to the proof of Katz’s conjecture, following Nygaard’s method
in [4], but adapted to the language of [1].

We begin with a general construction, going back to Mazur’s original
article [3]. Let p be a fixed prime number.

Definition 1 Let ®: M’ — M be an injective homomorphism of p-torsion
free complexes of abelian sheaves on a topological space X. Let M := M /pM,
and define, fori >0,

NiM/ — @—l(pzM) .

N;M = Im(p~'®:N'M' — M)
N'M' = Im(N'M' — M'/pM’)
N;M := Im(N;M — M/pM)

The verification of the following proposition is immediate.

Proposition 2 With the definitions above, N is a descending filtration of
M’ and N. is an ascending filtration of M. Furthermore

pNi—lM/ — NZM/ mpM/
pNipaM = N;MNpM

The map p~'® induces isomorphisms of pairs
(N*M', N"*'M') — (Ni, pNi;1)

(N'M',pN""*M') —— (N;, N;—1),



and hence isomorphisms:
Gryy M' — N;M
N'M —— Gt M
N'M'/(N*IM + pN*—' M) —— Grly M’
N;M/(N;_1M +pN;, M) — GrN' M
O

Example 3 Let W be the Witt ring of a perfect field k. Following Mazur,
let us define a “span” to be an injective homomorphism ®: M’ — M of
finitely generated W-modules of the same rank. For example, let ¢ be a
natural number and let ®: W — W denote multiplication by p’. Then N M
(resp. N.M) is the unique filtration on k such that Gr'k (resp. Gr; k) is
nonzero. It is standard fact that every span is in fact a direct sum of spans
of this form. Thus a span is determined up to isomorphism by the “abstract
Hodge numbers” hi(®) := dimy Griy M = dimy, Gr¥ M.

Now suppose that (M, d, F') is a saturated Dieudonné complex and let
O (M',d) — (M',d)

be the corresponding morphism of complexes. We assume here that M™ = 0
for n < 0, so " = p"F. Then it is easy to describe the filtrations N and
N. explicitly.

Proposition 4 Let (M',d, F) be a saturated Dieudonné complex and let N’
and N. be the filtrations on M defined by ® as in Definition 1. Then

NiM:pi_IVMO%pi_2VM1_>..._>VMZ'—1_>MZ'_>M1'+1”‘
NiM: MO — Ml_) RN Mi*1 N FMi—>pFMi+1—>~-'

Furthermore, the inverse of the isomorphism p~'®: N*M' — N;M is given
by p"" IV in degree n.

Proof: An element x of M™ lies in N*M™ if and only if p"Fa = p'y for
some y € M™ Thus N*M"™ = M™ when i < n, and when n < i, if and only if
Fx = p=""lpy = p"~ "~ 1FVy, that is, if and only if z = p" "'V for some
y. Furthermore, p~®p~ " 1Vy = p" " Fp'~""1Vy = y for every y € M™, so
N;M™ = M™ when n < i, and if i < n, then p*®N'M" = p"*FM™. O



The following result corresponds to Nygaard’s [4, Theorem 1.5]. The first
statement occurs in [1, Proposition 8.2.1], but not the second. (Actually
Nygaards’ theorem is more general, and applies to powers of ® as well as to
D)

Theorem 5 There are natural quasi-isomorphisms:

NlM — ...O%VMifl/pMi—l ‘Mi ‘MH_l---
BEWIM = .0 . 0 C WM e WM
and
NIT = M . M PMpM —— 0.
TﬁiwlM' — W1M04>-~ WlMi_IHZi(WlM.)%O...

Proof: Since N°M = N'M/(N'M NpM) = N'M/pN*~'M, the descrip-
tion of N*M  shown follows from Proposition 4, and similarly for the descrip-
tion of N; M. Now recall from [1, Corollary 2.7.2] that the natural surjection
m M — WiM' is a quasi-isomorphism, i.e., its kernel K" is acyclic. We
claim that the same is true for the surjection 7’: N'M — BZ'W,M", with
kernel K'. First we check degree i — 1, where we need to show that the
map VM o s injective. Suppose that € M*~! and dVz = py
with y € M?. Then dx = FdVx = Fpy = pFy, and since M’ is saturated,
it follows that = Fa' for some 2’ € M*~'. But then Vz = pz’ so Vz
maps to zero in M. Now let us check that the map is an isomorphism in
degrees j > i. From the exact sequence 0 — K" — N'M — WM — 0
we see that it is enough to check that H7(K") for j > i. Since K' is
acyclic, H"(K") = H" Y(K'/K") for all n, so we just need to show that
HI(K'/K") =0 for j >i—1. The complex K /K" vanishes in degrees > i,
so it suffices to check degree ¢ — 1. Recall that K\ =vir! + AV ?
and K'~1 = VI'~". Thus the boundary map K=2/K"~2 — Ki~1/K’i~1
is surjective and hence there is no cohomology in degree i —1. This completes
the proof that the map N'M — Z'W, M’ is a quasi-isomorphism



For the second diagram, recall that if x € M “and dz € pM*t! then

x € FM'. Thus FM' identifies with Z*(M ) and N.M with 7<'M . Since
M — WM is a quasi-isomorphism, the same holds after applying 7= and
the result follows. O

The following result shows that, under suitable hypotheses, formation of
the filtrations N' and N. commutes with passage to hypercohomology.

Theorem 6 Let (M, F,d) be a strict Dieudonné complex on a topological
space (or topos) X, let H := H (M',d) and suppose that the following
hypotheses are satisfied.

1. The groups in H' are p-torsion free.

2. The two spectral sequences of hypercohomology associated to the com-
plex Wi M'™ degenerate, at E1 and at Eo respectively. That is:

(a) For all i, the map H (X, WiM") — H (X, W1 M") are injec-
tive.

(b) For all i, the maps H (X, 7SWi M) — H (X, W1 M") are injec-
tive.

Let N'H" and N;H' be the submodules of H' defined by the map H (®): H' —
H' as in Definition 1. Then the following conclusions hold.

1. For all 7, the natural maps
H (M) [ H (M) = H (M [y’ M)

are isomorphisms. In particular, the natural maps
H :=H /pH — H (M) — HW M)

are isomorphisms.
2. The natural maps

H (N'M') — N'H (M) and H (N;M')— N,H (M")

are isomorphisms.

3. The natural maps
H (N'M') — H (W M) and H (N;M') — H (rSW) M)

are surjective.



Proof: Conclusion (1) follows from the long exact cohomology sequence
associated to the short exact sequence

0= M 2w M — M /pM -0,
hypothesis (1), and the fact that M — WM’ is a quasi-isomorphism.
Lemma 7 For every i, the map H (N'M") — H (M") is injective.

Proof: We use induction on ¢, the case ¢ = 0 being trivial. Thanks to
Proposition 2, we have an exact sequence

0= N P Niave o NOT S0 (1)
and hence a commutative diagram in which the rows are exact:

H (N“'M) Ip] H (N'M') — H (N'M)
a;—1 aj b;

H M) —L o g (M) —— H (D).
The map a;_; is injective by the induction hypothesis, the map p in the lower
left is injective because H (M) is torsion free, and by Theorem 5 the map b;
identifies with the map H (3Z*WyM") — H (Wi M) which is injective by
hypothesis (2a). It follows that a; is injective. O

Since N*M" is the kernel of the map
M 2 M MM
we find a map A ‘
¢ M INIM' — M [pi M’
Lemma 8 For every i, the map H (M /N'M') — H (M /p*M") induced
by ¢; is injective.

Proof: We argue by induction on 4, the case i = 0 being trivial. We have
a commutative diagram:

0 Gy M — M /N""'M" —~ M /N? 0

i Git1 oy
0 — M /pM’ 1], M Jp™IM — M [p'M —— 0

!



with exact rows. Furthermore, the map ; factors as a composition
Griy M -+ N;M — M

where the first arrow is the isomorphism from Proposition 2 and the second
is the evident inclusion. This yields the diagram:

H (Grly M) — H (M /NT'M') — H (M /N'M")

(08 Git1 b

i
i (1) 2L o ptary — mor .

The rows in the diagram are exact, the map labeled [p] is injective by

hypothesis (1), and the map ¢; is injective by the induction hypothesis.

The map v); factors as a composite

H (Griy My L g Ny P B ()

The first map is an isomorphism since «; is, and by Theorem 5, 3; identi-

fies with the map H (X, 7SW M') — H (X, Wy M), which is injective by

hypothesis (2b). It follows that v; is injective and then that ¢;11 is injective.
O

Lemma 9 The map H (N'M') — H (N'M ) is surjective.

Proof: The exact sequence (1) yields a long exact sequence

H (N'M') — H' (N'M) — BN M) 2 g+ (vi.

Thus it suffices to show that the map [p] is injective. This follows from the
commutative diagram

H (N*M) lp} H (N'M")

H (M) p

H'(M.)7

the torsion freeness of H (M), and Lemma 7. O



Now to prove the theorem, recall that N°H  is by definition the kernel of
the composition

co (M) 2O B () — =M H (M),

The top row of the following commutative diagram is exact:

a;

H (N'M")

H (M)

H (M /N'M")

Ci o

~

H (M)/p'H (M) — H (M [p'M).

As we have seen, a; and ¢; are injective, and it follows that H (NM")
identifies with the kernel of ¢;. O

Let us sketch how Theorem 6 implies Katz’s conjecture. Recall that if
X/k is a smooth over a perfect field k of characteristic p, the classical de
Rham Witt complex W2 identifies with the strict de Rham Witt com-
plex Wy constructed in [1] and that its hypercohomology identifies with
crystalline cohomology [2].

Theorem 10 Let X/k be a smooth proper scheme over a perfect field k
of characteristic p > 0 and let Hypy (X) := H (X, WQY). Assume that
H )y (X /W) is torsion free and that the Hodge spectral sequence of of X/k
degenerates at Ey. Let ® denote the endomorphism of Hjpy (X) induced
by Fx and let N and N. be the corresponding filtrations of Hjpy (X) as in
Definition 1. Then

1. The natural map H = Hjpy (X)/pHjpw (X) — Hjp(X/k) is an
1somorphism.

The filtration induced by N on Har(X/k) is the Hodge filtration.
The filtration induced by N. on Har(X/k) is the conjugate filtration.

The dimension of Gty H' is equal to the dimension of H (X, Qfx/k)

SN

The Newton polygon of the action of ® on H,jpy (X) lies on or above
the Hodge polygon of X/k in degree n.



Proof: Statements (1)—(4) follow from Theorem 6 appied to the saturated
de Rham Witt complex WQY and the isomorphism Q' e = WiQy of [1,
Proposition 4.3.2]. Statement (5) follow, since the Newton polygon of an
F-crystal always lies on or above the polygon formed from the numbers

dim Griy, H [3]. O
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