Systems of Linear Differential Equations

November 9, 2007

Notation

We work over an open interval:
$I:=(a, b):=\{t \in \mathbf{R}: a<t<b\}$.
Fix a positive integer n, and consider the vector space of functions:

$$
V:=\left\{\mathbf{x}: I \rightarrow \mathbf{R}^{n}\right\}
$$

Thus an element of V has the form:

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\cdots \\
x_{n}(t)
\end{array}\right)
$$

Let:

- $C_{n}^{0}(I)$ be the set of of those \mathbf{x} such that each x_{i} is continuous,
- $C_{n}^{1}(I)$ be the set of those \mathbf{x} such that each derivative x_{i}^{\prime} exists and is continuous.
These are linear subspaces of V.

Normal form for linear system of differential equations

Let

- A be an $n \times n$ matrix of continuous functions on l.
- \mathbf{y} be an $n \times 1$ matrix of continuous functions on I, that is, an element of $C_{n}^{0}(I)$.
We consider a system of the form

$$
\begin{aligned}
x_{1}^{\prime} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}+y_{1} \\
x_{2}^{\prime} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}+y_{2} \\
& \cdots \\
x_{n}^{\prime} & =a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}+y_{n}
\end{aligned}
$$

We can write this very simply using matrix notation:

$$
\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{y}
$$

equivalently

$$
\mathbf{x}^{\prime}-\mathbf{A} \mathbf{x}=\mathbf{y}
$$

The existence and uniqueness theorem

Theorem

Given \mathbf{A} and \mathbf{y} as above, then for any $t_{0} \in I$ and any $\mathbf{x}_{0} \in \mathbf{R}^{n}$, there is a unique $\mathbf{x} \in C_{n}^{1}(I)$ such that

- $\mathbf{x}^{\prime}-\mathbf{A x}=\mathbf{y}$, and
- $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$.

Why does this make sense?
Think of a walk in the park, with signposts everywhere.

