Matrix multiplication and composition of linear transformations

September 12, 2007

Let $B \in M_{nq}$ and let $A \in M_{pm}$ be matrices. Note that q is the number of columns of B and is also the length of the rows of B, and that p is the number of rows of A and is also the length of the columns of A.

Definition 1 If $B \in M_{nq}$ and $A \in M_{pm}$, the matrix product BA is defined if $q = p$. In this case it is the element of M_{nm} whose ijth entry is given by

$$(BA)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{ip}B_{pj}.$$

Thus the matrix product is an operation:

$$M_{np} \times M_{pm} \rightarrow M_{nm}.$$

Formulas:

1. If $m = 1$, multiplication by B is a map $\mathbb{R}^p = M_{p1} \rightarrow \mathbb{R}^n = M_{n1}$. It sends a column vector $X = \begin{pmatrix} x_1 \\ \cdots \\ x_p \end{pmatrix}$ to

$$BX = x_1C_1(B) + x_2C_2(B) + \cdots + x_pC_p(B),$$

where $C_j(B)$ is the jth column of B.

2. If $m = 1$, $Be_j = C_j(B)$, where e_j is the jth element of the standard frame for \mathbb{R}^p.

1
Theorem 2 Let \(T : \mathbb{R}^p \to \mathbb{R}^n \) be any function. Then the following are equivalent:

1. There exists an \(n \times p \) matrix \(B \) such that \(T(X) = T_B(X) \) for all \(X \in \mathbb{R}^p \).

2. \(T \) satisfies the principle(s) of superposition:

 (a) \(T(X + X') = T(X) + T(X') \) for all \(X \) and \(X' \) in \(\mathbb{R}^p \), and

 (b) \(T(cX) = cT(X) \) for all \(X \in \mathbb{R}^p \) and \(c \in \mathbb{R} \).

Proof: The proof that (1) implies (2) was given earlier and is in the book; it is a consequence of the properties of matrix multiplication. Let us prove that (2) implies (1). First note that if (2) is true and if \(X_1, \ldots X_r \) are vectors and \(c_1, \ldots c_r \) are numbers, then \(T(c_1 X_1 + \cdots + c_r X_r) = c_1 T(X_1) + \cdots + c_r T(X_r) \). Now if \(T \) satisfies (2), we let \(B \) the \(n \times p \) matrix whose \(j \)th column is the vector \(T(e_j) \), for \(j = 1, \ldots p \). We must prove that \(T(X) = T_B(X) \) for all \(X \in \mathbb{R}^p \). But if \(X \in \mathbb{R}^p \), \(X = x_1 e_1 + \cdots + x_p e_p \), where the \(x_i \)'s are the coordinates of \(X \). Hence

\[
T(X) = T(x_1 e_1 + \cdots x_p e_p) \\
= x_1 T(e_1) + \cdots + x_p T(e_p) \\
= x_1 C_1(B) + \cdots + x_p C_p(B) \\
= BX \\
= T_B(X)
\]

\[\square\]

Corollary 3 A linear transformation is uniquely determined by its effect on the standard frame. More precisely, if \(T \) and \(T' \) are linear transformations from \(\mathbb{R}^p \) to \(\mathbb{R}^n \) and if \(T(e_j) = T'(e_j) \) for all \(j \), then \(T(X) = T'(X) \) for all \(X \).

Corollary 4 The composite of two linear transformations is linear.
Proof: Suppose S and T are linear and composable. Then
\[
S \circ T(X + X') = S(T(X + X')) = S(T(X)) + S(T(X')) = S \circ T(X) + S \circ T(X').
\]
The proof of the compatibility with scalar multiplication is similar. \qed

Theorem 5 If $B \in M_{np}$ and $A \in M_{pm}$, then the composite $T_B \circ T_A$ is T_{BA}.

Proof: We know that $T_B \circ T_A$ and T_{BA} are linear. To prove that they are equal it suffices to check that they have the same effect on each e_j. We compute
\[
T_B \circ T_A(e_j) = T_B(T_A(e_j)) = T_B(C_j(A)) = BC_j(A) = C_j(BA) = T_{BA}(e_j).
\]
\[\square\]

Corollary 6 Matrix multiplication is associative. That is if C, B and A are matrices with the correct dimensions, then $(CB)A = C(BA)$.

Theorem 7 If A and B are $n \times n$ matrices such that $BA = I_n$ (the identity matrix), then B and A are invertible, and $B = A^{-1}$.

Proof: Suppose that $BA = I_n$. Let us prove that the rank of A is n. To do this it suffices to check that T_A is injective. But $T_B \circ T_A = T_{BA} = T_{I_n}$ is the identity transformation. Thus if $T_A(X) = T_A(X')$, then $X = T_B(T_A(X)) = T_B(T_A(X'))$, so $X = X'$, i.e., T_A is injective, A has rank n, and hence A is invertible. Let A^{-1} be its inverse. We have $I_n = BA$, so
\[
A^{-1} = I_n A^{-1} = (BA)A^{-1} = B(AA^{-1}) = BI_n = B.
\]
\[\square\]