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Let B ∈ Mnq and let A ∈ Mpm be matrices. Note that q is the number
of columns of B and is also the length of the rows of B, and that p is the
number of rows of A and is also the length of the columns of A.

Definition 1 If B ∈ Mnq and A ∈ Mpm, the matrix product BA is defined
if q = p. In this case it is the element of Mnm whose ijth entry is given by

(BA)ij = Ai1B1j + Ai2B2j + · · ·+ AipBpj.

Thus the matrix product is an operation:

Mnp ×Mpm → Mnm.

Formulas:

1. If m = 1, multiplication by B is a map Rp = Mp1 → Rn = Mn1. It

sends a column vector X =

 x1

· · ·
xp

 to

BX = x1C1(B) + x2C2(B) + · · ·xpCp(B),

where Cj(B) is the jth column of B.

2. If m = 1, Bej = Cj(B), where ej is the jth element of the standard
frame for Rp.

1



Theorem 2 Let T :Rp → Rn be any function. Then the following are equiv-
alent:

1. There exists an n × p matrix B such that T = TB, i.e., such that
T (X) = TB(X) for all X ∈ Rp.

2. T satisfies the principle(s) of superposition:

(a) T (X + X ′) = T (X) + T (X ′) for all X and X ′ in Rp, and

(b) T (cX) = cT (X) for all X ∈ Rp and c ∈ R.

Proof: The proof that (1) implies (2) was given earlier and is in the book; it
is a consequence of the properties of matrix multiplication. Let us prove that
(2) implies (1). First note that if (2) is true and if X1, . . . , Xr are vectors and
c1, . . . cr are numbers, then T (c1X1 + · · ·+ crXr) = c1T (X1) + · · ·+ crT (xr).
Now if T satisfies (2), we let B the n×p matrix whose jth column is the vector
T (ej), for j = 1, . . . p. We must prove that T (X) = TB(X) for all X ∈ Rp.
But if X ∈ Rp, X = x1e1 + · · ·xpep, where the xi’s are the coordinates of X.
Hence

T (X) = T (x1e1 + · · ·xpep)

= x1T (e1) + · · ·xpT (ep)

= x1C1(B) + · · ·xpCp(B)

= BX

= TB(X)

Corollary 3 A linear transformation is uniquely determined by its effect on
the standard frame. More precisely, if T and T ′ are linear transformations
from Rp to Rn and if T (ej) = T ′(ej) for all j, then T (X) = T ′(X) for all X.

Corollary 4 The composite of two linear transformations is linear.
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Proof: Suppose S and T are linear and composible. Then

S ◦ T (X + X ′) = S(T (X + X ′))

= S(T (X) + T (X ′))

= S(T (X)) + S(T (X ′))

= S ◦ T (X) + S ◦ T (X ′).

The proof of the compatibility with scalar multiplication is similar.

Theorem 5 If B ∈ Mnp and A ∈ Mpm, then the composite TB ◦ TA is TBA.

Proof: We know that TB ◦ TA and TBA are linear. To prove that they are
equal it suffices to check that they have the same effect on each ej. We
compute

TB ◦ TA(ej) = TB(TA(ej))

= TB(Cj(A))

= BCj(A)

= Cj(BA)

= TBA(ej)

Corollary 6 Matrix multiplication is associative. That is if C, B and A are
matrices with the correct dimensions, then (CB)A = C(BA).

Theorem 7 If A and B are n×n matrices such that BA = In (the identity
matrix), then B and A are invertible, and B = A−1.

Proof: Suppose that BA = In. Let us prove that the rank of A is n. To do
this it suffices to check that TA is injective. But TB ◦ TA = TBA = TIn is the
identity transformation. Thus if TA(X) = TA(X ′), then X = TB(TA(X)) =
TB(TA(X ′)), so X = X ′, i.e., TA is injective, A has rank n, and hence A is
invertible. Let A−1 be its inverse. We have In = BA, so

A−1 = InA
−1 = (BA)A−1 = B(AA−1) = BIn = B.
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