Matrix multiplication and composition of linear transformations

September 12, 2007

Let $B \in M_{n q}$ and let $A \in M_{p m}$ be matrices. Note that q is the number of columns of B and is also the length of the rows of B, and that p is the number of rows of A and is also the length of the columns of A.

Definition 1 If $B \in M_{n q}$ and $A \in M_{p m}$, the matrix product $B A$ is defined if $q=p$. In this case it is the element of $M_{n m}$ whose $i j t h$ entry is given by

$$
(B A)_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i p} B_{p j} .
$$

Thus the matrix product is an operation:

$$
M_{n p} \times M_{p m} \rightarrow M_{n m}
$$

Formulas:

1. If $m=1$, multiplication by B is a map $\mathbf{R}^{p}=M_{p 1} \rightarrow \mathbf{R}^{n}=M_{n 1}$. It sends a column vector $X=\left(\begin{array}{c}x_{1} \\ \cdots \\ x_{p}\end{array}\right)$ to

$$
B X=x_{1} C_{1}(B)+x_{2} C_{2}(B)+\cdots x_{p} C_{p}(B),
$$

where $C_{j}(B)$ is the j th column of B.
2. If $m=1, B e_{j}=C_{j}(B)$, where e_{j} is the j th element of the standard frame for \mathbf{R}^{p}.

Theorem 2 Let $T: \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ be any function. Then the following are equivalent:

1. There exists an $n \times p$ matrix B such that $T=T_{B}$, i.e., such that $T(X)=T_{B}(X)$ for all $X \in \mathbf{R}^{p}$.
2. T satisfies the principle(s) of superposition:
(a) $T\left(X+X^{\prime}\right)=T(X)+T\left(X^{\prime}\right)$ for all X and X^{\prime} in \mathbf{R}^{p}, and
(b) $T(c X)=c T(X)$ for all $X \in \mathbf{R}^{p}$ and $c \in \mathbf{R}$.

Proof: The proof that (1) implies (2) was given earlier and is in the book; it is a consequence of the properties of matrix multiplication. Let us prove that (2) implies (1). First note that if (2) is true and if X_{1}, \ldots, X_{r} are vectors and $c_{1}, \ldots c_{r}$ are numbers, then $T\left(c_{1} X_{1}+\cdots+c_{r} X_{r}\right)=c_{1} T\left(X_{1}\right)+\cdots+c_{r} T\left(x_{r}\right)$. Now if T satisfies (2), we let B the $n \times p$ matrix whose j th column is the vector $T\left(e_{j}\right)$, for $j=1, \ldots p$. We must prove that $T(X)=T_{B}(X)$ for all $X \in \mathbf{R}^{p}$. But if $X \in \mathbf{R}^{p}, X=x_{1} e_{1}+\cdots x_{p} e_{p}$, where the x_{i} 's are the coordinates of X. Hence

$$
\begin{aligned}
T(X) & =T\left(x_{1} e_{1}+\cdots x_{p} e_{p}\right) \\
& =x_{1} T\left(e_{1}\right)+\cdots x_{p} T\left(e_{p}\right) \\
& =x_{1} C_{1}(B)+\cdots x_{p} C_{p}(B) \\
& =B X \\
& =T_{B}(X)
\end{aligned}
$$

Corollary 3 A linear transformation is uniquely determined by its effect on the standard frame. More precisely, if T and T^{\prime} are linear transformations from \mathbf{R}^{p} to \mathbf{R}^{n} and if $T\left(e_{j}\right)=T^{\prime}\left(e_{j}\right)$ for all j, then $T(X)=T^{\prime}(X)$ for all X.

Corollary 4 The composite of two linear transformations is linear.

Proof: Suppose S and T are linear and composible. Then

$$
\begin{aligned}
S \circ T\left(X+X^{\prime}\right) & =S\left(T\left(X+X^{\prime}\right)\right) \\
& =S\left(T(X)+T\left(X^{\prime}\right)\right) \\
& =S(T(X))+S\left(T\left(X^{\prime}\right)\right) \\
& =S \circ T(X)+S \circ T\left(X^{\prime}\right) .
\end{aligned}
$$

The proof of the compatibility with scalar multiplication is similar.
Theorem 5 If $B \in M_{n p}$ and $A \in M_{p m}$, then the composite $T_{B} \circ T_{A}$ is $T_{B A}$.
Proof: We know that $T_{B} \circ T_{A}$ and $T_{B A}$ are linear. To prove that they are equal it suffices to check that they have the same effect on each e_{j}. We compute

$$
\begin{aligned}
T_{B} \circ T_{A}\left(e_{j}\right) & =T_{B}\left(T_{A}\left(e_{j}\right)\right) \\
& =T_{B}\left(C_{j}(A)\right) \\
& =B C_{j}(A) \\
& =C_{j}(B A) \\
& =T_{B A}\left(e_{j}\right)
\end{aligned}
$$

Corollary 6 Matrix multiplication is associative. That is if C, B and A are matrices with the correct dimensions, then $(C B) A=C(B A)$.

Theorem 7 If A and B are $n \times n$ matrices such that $B A=I_{n}$ (the identity matrix), then B and A are invertible, and $B=A^{-1}$.

Proof: Suppose that $B A=I_{n}$. Let us prove that the rank of A is n. To do this it suffices to check that T_{A} is injective. But $T_{B} \circ T_{A}=T_{B A}=T_{I_{n}}$ is the identity transformation. Thus if $T_{A}(X)=T_{A}\left(X^{\prime}\right)$, then $X=T_{B}\left(T_{A}(X)\right)=$ $T_{B}\left(T_{A}\left(X^{\prime}\right)\right)$, so $X=X^{\prime}$, i.e., T_{A} is injective, A has rank n, and hence A is invertible. Let A^{-1} be its inverse. We have $I_{n}=B A$, so

$$
A^{-1}=I_{n} A^{-1}=(B A) A^{-1}=B\left(A A^{-1}\right)=B I_{n}=B
$$

