Matrix multiplication and composition of linear transformations

September 12, 2007

Let $B \in M_{nq}$ and let $A \in M_{pm}$ be matrices. Note that q is the number of columns of B and is also the length of the rows of B, and that p is the number of rows of A and is also the length of the columns of A.

Definition 1 If $B \in M_{nq}$ and $A \in M_{pm}$, the matrix product BA is defined if q = p. In this case it is the element of M_{nm} whose *ij*th entry is given by

$$(BA)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{ip}B_{pj}.$$

Thus the matrix product is an operation:

$$M_{np} \times M_{pm} \to M_{nm}.$$

Formulas:

1. If m = 1, multiplication by B is a map $\mathbf{R}^p = M_{p1} \to \mathbf{R}^n = M_{n1}$. It sends a column vector $X = \begin{pmatrix} x_1 \\ \cdots \\ x_p \end{pmatrix}$ to $BX = x_1 C_1(B) + x_2 C_2(B) + \cdots + x_p C_p(B),$

where $C_j(B)$ is the *j*th column of *B*.

2. If m = 1, $Be_j = C_j(B)$, where e_j is the *j*th element of the standard frame for \mathbf{R}^p .

Theorem 2 Let $T: \mathbb{R}^p \to \mathbb{R}^n$ be any function. Then the following are equivalent:

- 1. There exists an $n \times p$ matrix B such that $T = T_B$, *i.e.*, such that $T(X) = T_B(X)$ for all $X \in \mathbf{R}^p$.
- 2. T satisfies the principle(s) of superposition:
 - (a) T(X + X') = T(X) + T(X') for all X and X' in \mathbb{R}^p , and
 - (b) T(cX) = cT(X) for all $X \in \mathbf{R}^p$ and $c \in \mathbf{R}$.

Proof: The proof that (1) implies (2) was given earlier and is in the book; it is a consequence of the properties of matrix multiplication. Let us prove that (2) implies (1). First note that if (2) is true and if X_1, \ldots, X_r are vectors and $c_1, \ldots c_r$ are numbers, then $T(c_1X_1 + \cdots + c_rX_r) = c_1T(X_1) + \cdots + c_rT(x_r)$. Now if T satisfies (2), we let B the $n \times p$ matrix whose jth column is the vector $T(e_j)$, for $j = 1, \ldots p$. We must prove that $T(X) = T_B(X)$ for all $X \in \mathbf{R}^p$. But if $X \in \mathbf{R}^p$, $X = x_1e_1 + \cdots + x_pe_p$, where the x_i 's are the coordinates of X. Hence

$$T(X) = T(x_1e_1 + \cdots + x_pe_p)$$

= $x_1T(e_1) + \cdots + x_pT(e_p)$
= $x_1C_1(B) + \cdots + x_pC_p(B)$
= BX
= $T_B(X)$

_		
г		Ъ
L		н
L		н
		н

Corollary 3 A linear transformation is uniquely determined by its effect on the standard frame. More precisely, if T and T' are linear transformations from \mathbf{R}^p to \mathbf{R}^n and if $T(e_j) = T'(e_j)$ for all j, then T(X) = T'(X) for all X.

Corollary 4 The composite of two linear transformations is linear.

Proof: Suppose S and T are linear and composible. Then

$$S \circ T(X + X') = S(T(X + X'))$$

= $S(T(X) + T(X'))$
= $S(T(X)) + S(T(X'))$
= $S \circ T(X) + S \circ T(X').$

The proof of the compatibility with scalar multiplication is similar.

Theorem 5 If $B \in M_{np}$ and $A \in M_{pm}$, then the composite $T_B \circ T_A$ is T_{BA} .

Proof: We know that $T_B \circ T_A$ and T_{BA} are linear. To prove that they are equal it suffices to check that they have the same effect on each e_j . We compute

$$T_B \circ T_A(e_j) = T_B(T_A(e_j))$$

= $T_B(C_j(A))$
= $BC_j(A)$
= $C_j(BA)$
= $T_{BA}(e_j)$

Corollary 6 Matrix multiplication is associative. That is if C, B and A are matrices with the correct dimensions, then (CB)A = C(BA).

Theorem 7 If A and B are $n \times n$ matrices such that $BA = I_n$ (the identity matrix), then B and A are invertible, and $B = A^{-1}$.

Proof: Suppose that $BA = I_n$. Let us prove that the rank of A is n. To do this it suffices to check that T_A is injective. But $T_B \circ T_A = T_{BA} = T_{I_n}$ is the identity transformation. Thus if $T_A(X) = T_A(X')$, then $X = T_B(T_A(X)) = T_B(T_A(X'))$, so X = X', *i.e.*, T_A is injective, A has rank n, and hence A is invertible. Let A^{-1} be its inverse. We have $I_n = BA$, so

$$A^{-1} = I_n A^{-1} = (BA)A^{-1} = B(AA^{-1}) = BI_n = B.$$