The inverse of a matrix

September 10, 2007

Theorem 1 Let A be an $n \times n$ matrix of rank n. Then T_{A} is invertible, and its inverse is $T_{A^{-1}}$, where A^{-1} can be computed as follows. Let I_{n} be the $n \times n$ identity matrix and let $\left(\begin{array}{ll}A & I_{n}\end{array}\right)$ be the $n \times 2 n$ matrix formed by adding the columns of I_{n} to the right of A_{n}. Then $\operatorname{rref}\left(\begin{array}{ll}A & I_{n}\end{array}\right)=\left(\begin{array}{ll}I_{n} & A^{-1}\end{array}\right)$.

Proof: We have already proved that T_{A} is invertible. Recall also that since A has rank n, all the rows of $\operatorname{rref}(A)$ are nonzero, hence every row and every column has a leading index, hence $\operatorname{rref}(A)=I_{n}$. Let A^{-1} be the matrix described above. To show that $T_{A^{-1}}$ is the inverse of T_{A}, it is enough to show that for any $Y \in \mathbf{R}^{n}, X:=T_{A^{-1}} Y$ satisfies the equation $T_{A} X=Y$. Let us first check this when $Y=e_{j}$, where $\left(e_{1}, \ldots e_{n}\right)$ be the standard frame for \mathbf{R}^{n}. To solve the equation $T_{A}(X)=e_{j}$, one puts the augmented matrix ($\begin{array}{ll}A & e_{j}\end{array}$) in reduced row echelon form. This will look like $\left(\begin{array}{ll}I_{n} & C_{j}\end{array}\right)$, where C_{j} is some column vector, and in fact C_{j} is the solution: $T_{A}\left(C_{j}\right)=e_{j}$. Now you can see easily that all the C_{j} 's can be calculated together by using the method of the theorem: C_{j} is just the j th column of the matrix A^{-1} described above.

To deduce the general case we use the principle of superposition. For any $Y, Y=\sum_{j} y_{j} e_{j}$, where the y_{j} 's are the entries of Y. Hence the principle of superposition tells us that

$$
T_{A^{-1}}(Y)=\sum_{j} y_{j} T_{A^{-1}}\left(e_{j}\right)
$$

Recall that for any matrix $B, T_{B}\left(e_{j}\right)=C_{j}(B)$, the j th column of B. Thus

$$
T_{A^{-1}}(Y)=\sum_{j} y_{j} C_{j}\left(A^{-1}\right)
$$

Now by the principle of superposition again,

$$
T_{A}\left(T_{A^{-1}}(Y)\right)=T_{A}\left(\sum_{j} y_{j} C_{j}\left(A^{-1}\right)\right)=\sum_{j} y_{j} T_{A}\left(C_{j} A^{-1}\right)
$$

By what we saw above, $T_{A}\left(C_{j} A^{-1}\right)=e_{j}$, so

$$
T_{A}\left(T_{A^{-1}}(Y)\right)=\sum_{j} y_{j} T_{A}\left(C_{j}\left(A^{-1}\right)\right)=\sum_{j} y_{j} e_{j}=Y
$$

