Matrix Algebra and Linear Transformations

September 5, 2007

Recall that a matrix is a rectangular array of numbers. More precisely, an $n \times m$ matrix is an array with n rows and m columns. (The number of rows is always specified first, and the number of columns second; the choice of the letters n and m is not important or standard.) Thus an $n \times m$ matrix is determined by $n m$ numbers, called its entries. One denotes by $A_{i j}$ the entry in the i th row and j th column, and by $M_{n m}$ the set of all $n \times m$ matrices. The notation $A \in M_{n m}$ means that A belongs to this set, so that it is an $n \times m$ matrix. Recall that a row vector is a matrix with just one row, and a column vector is a matrix with just one column. The work vector will usually mean a column vector. For example, we will often write a row vector of length n as $\mathbf{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$.

Here are the definitions of the basic matrix operations.

- Matrix addition: If $A, B \in M_{n m}$, then $A+B \in M_{n m}$ is obtained from A and B by adding the corresponding entries:

$$
(A+B)_{i j}: A_{i j}+B_{i j} \text { for all } i, j
$$

- Multipication of a matrix by a number: If $A \in M_{n m}$ and $r \in \mathbf{R}$, then $r A$ is obtained by multiplying all the entries of A by r :

$$
(r A)_{i j}:=r A_{i j} \text { for all } i, j
$$

- The dot product of two row vectors (or two column vectors) of the same length n is obtained by adding together the products of corresponding entries:

$$
\mathbf{v} \cdot \mathbf{w}:=v_{1} w_{1}+v_{2} w_{2}+\cdots v_{n} w_{n}
$$

Here the answer is a number, not a matrix.

- The product of an $n \times m$ matrix A by a column vector \mathbf{v} of length m is the column vector of length m whose i th entry is computed from the i th row of A and \mathbf{v} in a way quite a bit like the dot product:

$$
(A \mathbf{v})_{i}:=a_{i 1} v_{1}+a_{i 2} v_{2}+\cdots a_{i m} v_{m} \text { for } i=1, \cdots n .
$$

The way these operations work can by indicated symbolically as follows:

- Addition: $M_{n m} \times M_{n m} \xrightarrow{+} M_{n m}$
- Scalar multiplication: $\mathbf{R} \times M_{n m} \longrightarrow M_{n m}$
- Dot product: $M_{n 1} \times M_{n 1} \longrightarrow \mathbf{R}$
- Matrix multiplication: $M_{n m} \times M_{m 1} \longrightarrow M_{n 1}$

Later we will extend the definition of matrix multiplication: $M_{n m} \times M_{m p} \longrightarrow M_{n p}$ It is sometimes useful to change row vectors to column vectors. If \mathbf{v} is a row vector of length n. then its transpose \mathbf{v}^{T} is the column vector with the same entries. More generally, if A is an $n \times m$ matrix, then the transpose A^{T} of A is the $m \times n$ matrix defined by changing all rows to columns:

$$
\left(A^{T}\right)_{i j}:=A_{j i} .
$$

Remark: Note that numbers are not the same thing as 1×1 matrices. In particular we cannot define the product of a 1×1 matrix and a 2×2 matrix. There is also a pedantic looking distinction that the book is not careful about but which can be important. The product of a row vector of length n and a column vector of length n is a 1×1 matrix. The dot product of two column vectors of length n is a number. To relate these precisely, we could say the following: If \mathbf{v} is a row vector of length n and \mathbf{w} is a column vector of length n, then the matrix product $\mathbf{v w}$ is the 1×1 matrix whose only entry is the dot product $\mathbf{v}^{T} \cdot \mathbf{w}$.

More generally, one can combine scalar multiplication and addition into one step. This is usually expressed in the case of vectors of vectors as follows.

Definition 1 Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{m}$ be a list of vectors. Then a vector \mathbf{v} is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{m}$ if there exists a list $c_{1}, \ldots c_{n}$ of numbers such that $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots c_{m} \mathbf{v}_{m}$.

It is extremely useful to know that matrix operations satisfy the following familiar looking properties: They are all easy to check.

- Associativity: $(A+B)+C=A+(B+C)$.
- Commutativity: $A+B=B+A$.
- Neutral element: $0+A=A+0=A$, where A is the zero matrix (all entries are zero).
- Associativity: $(a b) A=a(b A)$.
- Unit element: $1 A=A$.
- Distributivity: $c(A+B)=c A+c B$.
- Distributivity: $(a+b) A=a A+b A$.
- Distributivity: $A(\mathbf{v}+\mathbf{w})=A \mathbf{v}+A \mathbf{w}$.
- Commutativity: $A(c \mathbf{v})=c(A \mathbf{v})$.

An important consequence of the last two is the following form of the principal of superposition, which is often useful when solving linear equations:

Principle of superposition: If $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=\mathbf{w}_{2}$, then

$$
A\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}\right)=a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}
$$

