Orthogonal matrices

October 8, 2007

The following formula is extremely useful. It left as an exercise in our book, but I think it is too important for that.

Theorem 1 Let $v \in \mathbf{R}^{m}, w \in \mathbf{R}^{n}$ and $A \in M_{n m}(\mathbf{R})$. Then

$$
\left(A^{T} v \mid w\right)=(v \mid A w)
$$

Proof:

$$
\begin{aligned}
\left(A^{T} v \mid w\right) & =\left(A^{T} v\right)^{T} w \\
& =\left(v^{T} A^{T^{T}}\right) w \\
& =\left(v^{T} A\right) w \\
& =v^{T}(A w) \\
& =(v \mid A w) .
\end{aligned}
$$

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

1. The columns $\left(v_{1}, \ldots v_{n}\right)$ of A form an orthonormal sequence.
2. $A^{T} A=I_{n}$ (the $n \times n$ identity matrix).
3. $(A v \mid A w)=(v \mid w)$ for every $v, w \in \mathbf{R}^{n}$.

Proof: Suppose (1) holds. Let us compute the $i j$ th entry of $B:=A^{T} A$. This is obtained by multiplying the transpose of the i th row of A^{T} by the j th column of A. That is

$$
\begin{aligned}
b_{i j} & =R_{i}\left(A^{T}\right) C_{j}(A) \\
& =C_{i}(A)^{T} C_{j}(A) \\
& =v_{i}^{T} v_{j}=\left(v_{i} \mid v_{j}\right)
\end{aligned}
$$

Since $\left(v_{1}, \ldots v_{n}\right)$ is orthonormal, this is 1 if $i=j$ and is zero otherwise. In other words, $B=I_{n}$, and (2) holds. Suppose (2) holds. Then for any v, w,

$$
(A v \mid A w)=\left(A^{T} A v \mid w\right)=\left(I_{n} v \mid w\right)=(v \mid w) .
$$

Suppose (3) holds. Recall that $v_{i}=A e_{i}$, where $\left(e_{1}, \ldots e_{n}\right)$ is the standard frome for \mathbf{R}^{n}. Then

$$
\left(v_{i} \mid v_{j}\right)=\left(A e_{i} \mid A e_{j}\right)=\left(e_{i} \mid e_{j}\right),
$$

which is 1 if $i=j$ and is zero otherwise. Thus $\left(v_{1}, \ldots v_{n}\right)$ is orthonormal.

