Orthogonal matrices

October 8, 2007

The following formula is extremely useful. It left as an exercise in our book, but I think it is too important for that.

Theorem 1 Let $v \in \mathbf{R}^m$, $w \in \mathbf{R}^n$ and $A \in M_{nm}(\mathbf{R})$. Then

$$(A^T v | w) = (v | Aw).$$

Proof:

$$(A^T v | w) = (A^T v)^T w$$

= $(v^T A^{T^T}) w$
= $(v^T A) w$
= $v^T (Aw)$
= $(v | Aw).$

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- 1. The columns $(v_1, \ldots v_n)$ of A form an orthonormal sequence.
- 2. $A^T A = I_n$ (the $n \times n$ identity matrix).
- 3. (Av|Aw) = (v|w) for every $v, w \in \mathbb{R}^n$.

Proof: Suppose (1) holds. Let us compute the ijth entry of $B := A^T A$. This is obtained by multiplying the transpose of the *i*th row of A^T by the *j*th column of A. That is

$$b_{ij} = R_i(A^T)C_j(A)$$

= $C_i(A)^TC_j(A)$
= $v_i^Tv_j = (v_i|v_j)$

Since $(v_1, \ldots v_n)$ is orthonormal, this is 1 if i = j and is zero otherwise. In other words, $B = I_n$, and (2) holds. Suppose (2) holds. Then for any v, w,

$$(Av|Aw) = (ATAv|w) = (Inv|w) = (v|w).$$

Suppose (3) holds. Recall that $v_i = Ae_i$, where $(e_1, \ldots e_n)$ is the standard frome for \mathbf{R}^n . Then

$$(v_i|v_j) = (Ae_i|Ae_j) = (e_i|e_j),$$

which is 1 if i = j and is zero otherwise. Thus $(v_1, \ldots v_n)$ is orthonormal. \Box