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Inner products are used to deal with two important geometric notions:
angle and distance.

Definition 1 Let v and w be vectors in Rn, with coordinates (x1, . . . xn)
and (y1, . . . yn), respectively. Then the inner product or dot product of v and
w is:

v · w := 〈v, w〉 := (v|w) := x1y1 + x2y2 + · · ·xnyn.

Note that there are at least three sets of notation commonly used to denote
the inner product. Furthermore, it is sometimes called the “dot product” or
“scalar product.” Note that the dot product of two vectors in Rn is a real
number, and that the matrix product vT w is the 1 × 1 matrix whose only
entry is (v|w). We shall sometimes identify the matrix vT w with the number
(v|w).

Theorem 2 The inner product Rn ×Rn → R satisfies the following prop-
erties:

1. (v + v′|w) = (v|w) + (v′|w) if v, v′, w ∈ Rn.

2. (av|w) = a(v|w) if v, w ∈ Rn and a ∈ R.

3. (v|w) = (w|v) if v, w ∈ Rn.

4. (v|v) > 0 if v 6= 0, for any v ∈ Rn and (0|0) = 0.

These properties are quite easy to verify. Note however that the last of them
uses the special fact that the square of any real number is positive.
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Definition 3 If v ∈ Rn, then ||v|| :=
√

(v|v). The (nonnegative) real num-

ber ||v|| is called the magnitude or length of v. If v and w are two elements
Rn, then ||v−w|| is called the distance between v and w. If v, w ∈ Rn, then
v ⊥ w if (v|w) = 0, in which case we say that v and w are orthogonal.

Proposition 4 If v, w ∈ Rn, then

1. ||v + w||2 = ||v||2 + ||w||2 + 2(v|w).

2. If v ⊥ w, then ||v + w||2 = ||v||2 + ||w||2.

3. |(v|w)| ≤ ||v|| ||w||.

4. ||v + w|| ≤ ||v||+ ||w||.

Of these, the only difficult one is (3), the Cauchy-Schwartz inequality. It is
easy to prove (4) from (3) and (1).

Definition 5 A sequence of vectors (v1, . . . vm) in Rn is orthogonal if vi ⊥ vj

whenever i 6= j. The sequence is orthonormal if it is orthogonal and in
addition ||vi|| = 1 for all i.

The following result is probably the most important theorem about inner
products.

Theorem 6 Let W be a linear subspace of Rn and let v be a member of
Rn. There v can be written uniquely

v = πW (v) + π⊥
W (v),

where πW (v) ∈ W and π⊥
W (v) is orthogonal to every vector in W . Further-

more:

1. πW (v) is the vector in W which is closest to v. That is,

||πW (v)− v|| ≤ ||w − v|| for every w ∈ W ,

with equality only if w = πW (v).

2. If (w1, . . . wm) is an orthonormal basis for W , then

πW (v) = (v|w1)w1 + · · · (v|wm)wm.
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3. More generally, if (w1, . . . wm) if an orthogonal basis for W , then

πW (v) =
(v|w1)w1

||w1||2
+ · · · (v|wm)wm

||wm||2
.

Let me explain a proof of (1). Let w0 := πW (v) This a vector in W . Let w be
any other vector in W . We claim that if w 6= w0, then ||v −w|| > ||v −w0||.
Let w′ := w0 − w. This is another vector in W , and

||v − w||2 = ||(v − w0) + (w0 − w)||2

= ||π⊥(v) + w′||2

= ||π⊥(v)||2 + ||w′||2

since π⊥(v) is orthogonal to w′ (use formula ). But ||w′||2 ≥ 0, and is zero
only if w = w0.
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