Coordinates

September 24, 2007

Let V be a linear subspace of \mathbf{R}^{n} and let $\beta:=\left(v_{1}, \ldots v_{m}\right)$ be a basis for V. Then every vector v in V can be written uniquely as a linear combination:

$$
v=c_{1} v_{1}+\cdots c_{m} v_{m} .
$$

The numbers c_{i} are called the coordinates of v with respect to the basis β. It is convenient to arrange these into a column, and write

$$
[v]_{\beta}:=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\cdots \\
c_{m}
\end{array}\right)
$$

Then the vector $[v]_{\beta}$ is called the coordinate vector of v with respect to the basis β.

Theorem: The mapping $v \mapsto[v]_{\beta}$ defines a bijection between the linear subsapce V and \mathbf{R}^{m}. Furthermore, this bijection is compatible with vector addition and scalar multiplication:

$$
\begin{gathered}
{\left[v+v^{\prime}\right]_{\beta}=[v]_{\beta}+\left[v^{\prime}\right]_{\beta}} \\
{[c v]_{\beta}=c[v]_{\beta} .}
\end{gathered}
$$

Now let V be a linear subspace of some \mathbf{R}^{M} and W a linear subspace of some \mathbf{R}^{N}, and suppose further that we have bases $\beta:=\left(v_{1}, \ldots v_{m}\right)$ for V and $\gamma:=\left(w_{1}, \ldots w_{n}\right)$ for W. Then if $T: V \rightarrow W$ is a linear transformation, we define the matrix of T with respect to the bases β and γ. This is the $n \times m$ matrix whose j th column is the coordinate vector $\left[T\left(\left(v_{j}\right)\right]_{\gamma}\right.$ of $T\left(v_{j}\right)$ with respect to the basis γ. This matrix is often denoted by $[T]_{\beta}^{\gamma}$, although some
authors put β above and γ below. If $V=W$, it is usually best to take $\beta=\gamma$ as well.

The most important formula to remember is the following.
Let $\beta:=\left(v_{1}, \ldots v_{n}\right)$ be a basis for \mathbf{R}^{n}. Let S be the $n \times n$ matrix whose columns are the v_{j} 's. Then S is invertible. Moreover, if T is the linear transformation T_{A} where A is some $n \times n$ matrix, and B is the matrix for T with respect to the basis β, then

$$
S B=A S, \quad B=S^{-1} A S, \quad \text { and } A=S B S^{-1}
$$

Fortunately you need only remember the first of these, as the remaining two are easy to deduce. To figure out why the first is true, just compute column by column. The equation says $C_{j}(S B)=C_{j}(A S)$, that is $S C_{j}(B)=A C_{j}(S)$. On the right side, we have $A C_{j}(S)=T\left(v_{j}\right)$. On the left, if $C_{j}(B)$ is the column vector whose coordinates are $\left(x_{1}, \ldots x_{n}\right)$ we have $S C_{j}(B)=x_{1} v_{1}+$ $\cdots x_{n} v_{n}$. This means exactly the the x_{i} 's are the coordinates of $T\left(V_{j}\right)$ in the basis β, as in the definition.

