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Let A be an n×m matrix. We would like to use Gauss elimination to find
a basis for the column space of A. In order to do this we need to understand
more about the relationship between A and its reduced row echelon form.

Definition 1 Two matrices A and A′ are said to be row equivalent if there
exists a sequence of elementary row operations which transforms A to A′.

Note that A is row equivalent to itself. Furthermore, if A is row equivalent
to A′, A′ is row equivalent to A, because elementary row operations are
reversible. Finally, note that if A is row equivalent to A′ and A′ is row
equivalent to A′′, then A is row equivalent to A′′, since we can chain together
the necessary sequences of elementary row operations.

Proposition 2 Let A and A′ be n × m matrices. Then A and A′ are row
equivalent if and only if there exists an invertible n × n matrix U such that
A′ = UA.

Let me just explain how to find U . (In fact there can be many such U .)
This is similar to the algorithm we used for inverting a matrix, only here
we do not require that A be square. Just form the n × (m + n) matrix
(A|In), and apply the elementary row operations necessary to change A to
A′. The matrix you get is (A′|U), and UA = A′. This is easy to see if A′ can
be obtained by a single elementary row operation just by checking, and the
general case follows by chaining.

Corollary 3 If A′ and A are row equivalent, then

1. A′ and A have the same null space.
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2. A′ and A have the same row space (the span of the rows).

Proof: Actually we have already verified the first fact. As an exercise,
deduce it from proposition 2. The second fact is easily seen if A′ is obtained
from A by a single elementary row operation just from the definitions, and
the general case follows by a chaining argument.

It is now possible to prove that the reduced row echelon form of a matrix
is unique. Look for the note on this on the web page. Our main goal here is
to show how to use Gauss elimination to find a basis for the column space
of a matrix. The difficulty is that the column space (unlike the row space)
changes when elementary row operations are performed.

Theorem 4 Let A be an n×m matrix and let A′ be its reduced row echelon
form.

1. The null space of A is equal to the null space of A′.

2. The rank r of A is equal to the rank of A′.

3. If (`1, . . . `r) are the leading indices of A′, then the corresponding columns
(C`1(A

′), . . . C`r(A
′)) forms a basis for the column space of A′, and

4. (C`1(A), . . . C`r(A)) forms a basis for the column space of A.

The third statement is easy to see by inspection of the reduced row echelon
matrix A. The last statement is not explained well in the book. It is easy
to understand it, using the proposition, since A = UA′ for some invertible
matrix U . For any j, Cj(A

′) can be written as a linear combination of the
leading index columns of A′. Then

Cj(A
′) = x1C`1(A

′) + · · ·xrC`r(A
′)

UCj(A
′) = U (x1C`1(A

′) + · · ·xrC`r(A
′))

= x1UC`1(A
′) + · · ·xrUC`r(A

′)

Cj(UA′) = x1C`1(UA′) + · · ·xrC`r(UA′)

Cj(A) = x1C`1(A) + · · ·xrC`r(A)

This shows that every column of A is a linear combination of the leading
index columns, so they span the column space. A similar argument, using
U−1 shows that there are no redundancies among these columns, so they
form a basis for the column space of A.
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