Spans, Linear Independence and Bases

September 17, 2007

Definition $1 \operatorname{Let}(v):.=\left(v_{1}, \ldots, v_{m}\right)$ be a sequence of vectors in \mathbf{R}^{n}. Then a vector $v \in \mathbf{R}^{n}$ is said to be a linear combination of v. if there exists a sequence of numbers $(c):.=\left(c_{1}, \ldots, c_{m}\right)$ such that

$$
v=c_{1} v_{1}+c_{2} v_{2}+\cdots c_{m} v_{m} .
$$

The set of all such v is called the span of (v.).
Note that if A is the $n \times m$ matrix whose columns are the vectors v_{i}, then v is in the span of $(v$.$) if and only if there exists a column vector X$ in \mathbf{R}^{m} such that $v=A X$, i.e., if and only if v is in the image of T_{A}. Thus the span of $(v$.$) is always a linear subspace of \mathbf{R}^{n}$.

The span of the empty sequence is defined to be the set consisting of just the zero vector.

Definition 2 Let $(v):.=\left(v_{1}, \ldots, v_{m}\right)$ be a sequence of vectors. Then for $1 \leq i \leq m$, the i th vector v_{i} is said to be redundant in (v.) if it belongs to the span of the sequence $\left(v_{1}, \ldots, v_{i-1}\right)$. A sequence (v. .) is said to be linearly dependent if it contains a redundant vector; otherwise it is said to be linearly independent.

Lemma 3 If $\left(v_{1}, \ldots v_{m}\right)$ is a sequence of vectors, then for each i, the following are equivalent.

1. v_{i} is redundant.
2. $\operatorname{span}\left(v_{1}, \ldots, v_{i-1}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)$.

It follows from the lemma that we can omit all the redundant vectors from a sequence $(v$.$) without changing the span. It is pretty clear that the sequence$ we obtain in this way has no redundant vectors, i.e., is linearly independent.

Proposition 4 Let $(v):.=\left(v_{1}, \ldots, v_{m}\right)$ be a sequence of vectors. Then the following conditions are equivalent:

1. (v.) is linearly independent.
2. If $(c):.=\left(c_{1}, \ldots c_{m}\right)$ is a sequence of numbers such that $c_{1} v_{1}+\cdots v_{m} v_{m}=$ 0 , each $c_{i}=0$.
3. If (c.) and (c^{\prime}.) are two sequences of numbers such that $c_{1} v_{1}+\cdots c_{m} v_{m}=$ $c_{1}^{\prime}+\cdots c_{m}^{\prime} v_{m}=0$, then $c_{i}=c_{i}^{\prime}$ for all i.

This can be translated into matrix terms for computational purposes. Arrange the vectors v_{i} into the columns of an $n \times m$ matrix A. Consider the column vector X whose coordinates are the c_{i} appearing in the proposition above and recall that

$$
A X=x_{1} C_{1}(A)+x_{2} C_{2}(A)+\cdots x_{m} C_{m}(A)=c_{1} v_{1}+\cdots c_{m} v_{m} .
$$

Then condition (2) says that the kernel of T_{A} is $\{0\}$, and condition (3) says that T_{A} is injective.

Corollary 5 Let A be an $n \times m$ matrix. Then the following conditions are equivalent.

1. The columns of A are linearly independent.
2. The kernel of T_{A} (the nullspace of A) is $\{0\}$.
3. T_{A} is injective.
4. The rank of A is m.

Recall that the rank of a matrix is always less than or equal to the the length of its columns.

Corollary 6 If $v_{1}, \ldots v_{m}$ is an independent sequence of vectors in \mathbf{R}^{n}, then $m \leq n$.

Definition 7 Let W be a linear subspace of \mathbf{R}^{n}. A sequence (w.) of vectors in W is a basis for W if it is linearly independent and spans W.

Thus if $(w$.$) is a basis for W$, ever vector w in W can be expressed uniquely as a linear combination $c_{1} w_{1}+\cdots+c_{m} w_{m}$.

