Spans, Linear Independence and Bases

September 17, 2007

Definition 1 Let $(v_{\cdot}) := (v_1, \ldots, v_m)$ be a sequence of vectors in \mathbb{R}^n . Then a vector $v \in \mathbb{R}^n$ is said to be a linear combination of v_{\cdot} if there exists a sequence of numbers $(c_{\cdot}) := (c_1, \ldots, c_m)$ such that

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m.$$

The set of all such v is called the span of (v_{\cdot}) .

Note that if A is the $n \times m$ matrix whose columns are the vectors v_i , then v is in the span of (v_i) if and only if there exists a column vector X in \mathbf{R}^m such that v = AX, *i.e.*, if and only if v is in the image of T_A . Thus the span of (v_i) is always a linear subspace of \mathbf{R}^n .

The span of the empty sequence is defined to be the set consisting of just the zero vector.

Definition 2 Let $(v_{\cdot}) := (v_1, \ldots, v_m)$ be a sequence of vectors. Then for $1 \leq i \leq m$, the *i*th vector v_i is said to be redundant in (v_{\cdot}) if it belongs to the span of the sequence (v_1, \ldots, v_{i-1}) . A sequence (v_{\cdot}) is said to be linearly dependent if it contains a redundant vector; otherwise it is said to be linearly independent.

Lemma 3 If (v_1, \ldots, v_m) is a sequence of vectors, then for each *i*, the following are equivalent.

- 1. v_i is redundant.
- 2. $span(v_1, \ldots, v_{i-1}) = span(v_1, \ldots, v_i).$

It follows from the lemma that we can omit all the redundant vectors from a sequence (v.) without changing the span. It is pretty clear that the sequence we obtain in this way has no redundant vectors, *i.e.*, is linearly independent.

Proposition 4 Let $(v_{\cdot}) := (v_1, \ldots, v_m)$ be a sequence of vectors. Then the following conditions are equivalent:

- 1. (v.) is linearly independent.
- 2. If $(c_{\cdot}) := (c_1, \ldots, c_m)$ is a sequence of numbers such that $c_1v_1 + \cdots + v_mv_m = 0$, each $c_i = 0$.
- 3. If (c.) and (c'.) are two sequences of numbers such that $c_1v_1 + \cdots + c_mv_m = c'_1 + \cdots + c'_mv_m = 0$, then $c_i = c'_i$ for all *i*.

This can be translated into matrix terms for computational purposes. Arrange the vectors v_i into the columns of an $n \times m$ matrix A. Consider the column vector X whose coordinates are the c_i appearing in the proposition above and recall that

$$AX = x_1 C_1(A) + x_2 C_2(A) + \dots + x_m C_m(A) = c_1 v_1 + \dots + c_m v_m$$

Then condition (2) says that the kernel of T_A is $\{0\}$, and condition (3) says that T_A is injective.

Corollary 5 Let A be an $n \times m$ matrix. Then the following conditions are equivalent.

- 1. The columns of A are linearly independent.
- 2. The kernel of T_A (the nullspace of A) is $\{0\}$.
- 3. T_A is injective.
- 4. The rank of A is m.

Recall that the rank of a matrix is always less than or equal to the length of its columns.

Corollary 6 If $v_1, \ldots v_m$ is an independent sequence of vectors in \mathbb{R}^n , then $m \leq n$.

Definition 7 Let W be a linear subspace of \mathbb{R}^n . A sequence (w.) of vectors in W is a basis for W if it is linearly independent and spans W.

Thus if (w.) is a basis for W, ever vector w in W can be expressed *uniquely* as a linear combination $c_1w_1 + \cdots + c_mw_m$.