Fundamental solutions and matrix exponentials

November 21, 2007

Review We consider a homogeneous system of linear differential equations of the form

$$
\begin{equation*}
\mathbf{x}^{\prime}=A \mathbf{x} \tag{1}
\end{equation*}
$$

where A is an $n \times n$ matrix of continuous functions and \mathbf{x} is a column vector of differentiable functions.

- We know that the set of solutions is a vector space of dimension n. A basis for this space is sometimes called a fundamental solution set to the equation.
- If $\left(\mathbf{x}_{1}, \cdots \mathbf{x}_{n}\right)$ is such a basis, then the matrix \mathbf{X} whose columns are the vectors \mathbf{x}_{i} is sometimes called a fundamental matrix for the equation.

Applications This construction is useful for the following reasons. Theorem: Let \mathbf{X} be a fundamental matrix for the equation (1) above.

- If \mathbf{v} is any vector in \mathbf{R}^{n}, then the vector

$$
\mathbf{y}:=\mathbf{X v}
$$

is a solution to (1), and every solution is of this form.

- If C is an invertible matrix, then

$$
\tilde{\mathbf{X}}:=\mathbf{X} C
$$

is also a fundamental matrix for (1).

- In particular,

$$
\tilde{\mathbf{X}}:=\mathbf{X X}(0)^{-1}
$$

is the fundamental matrix with $\tilde{\mathbf{X}}(0)=I_{n}$.

- If $\mathbf{x}_{0} \in \mathbf{R}^{n}$, then

$$
\mathbf{x}:=\tilde{\mathbf{X}} \mathbf{x}_{0}
$$

is the solution to equation (1) satisfying the initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$.

Matrix Exponentials

When A is constant, matrix exponentials can be used to find a fundamental matrix for the equation (1).
Theorem: If A is any $n \times n$ matrix (real or complex)

$$
\exp A:=e^{A}:=I+\frac{A}{1!}+\frac{A^{2}}{2!}+\cdots+\frac{A^{n}}{n!}+\cdots
$$

- The series above converges, for every matrix A.
- If A and B commute, then $\exp (A+B)=\exp (A) \exp B$.
- If S is invertible, then $S(\exp A) S^{=1}=\exp \left(S A S^{-1}\right)$.
- If A is constant, $\mathbf{X}(t):=\exp (t A)$, then $\mathbf{X}^{\prime}(t)=A \exp (t A)=A \mathbf{X}(t)$.

In particular, if A is constant, then $\mathbf{X}(t):=\exp (t A)$ is a fundamental matrix for the equation (1).

Example: Diagonalizable matrices

If $D:=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$ is a diagonal matrix, then $e^{t D}$ is easy to compute:

$$
e^{t D}=\left(\begin{array}{cc}
e^{t \lambda_{1}} & 0 \\
0 & e^{t \lambda_{2}}
\end{array}\right)
$$

Example: Complex eigenvalues This formula works even if the eigenvalues λ_{i} are complex, if we apply Euler's formula. Sometimes it is easier to work directly. For example, suppose

$$
A:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Then $A^{2}=-I$ and hence

$$
\begin{aligned}
e^{t A} & =I+\frac{t A}{1!}+\frac{t^{2} A}{2!}+\frac{t^{3} A}{3!}+\cdots \\
& =\left(I-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\cdots\right)+A\left(\frac{t}{1!}-\frac{t^{3}}{3!}+\cdots\right) \\
& =\cos t I+\sin t A
\end{aligned}
$$

Thus

$$
e^{t A}=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

Example: nondiagonalizalbe matrices

Consider the matrix $N:=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then $N^{2}=0$, and hence

$$
e^{t N}:=I+t N+\frac{t^{2} N^{2}}{2!}+\cdots=I+t N
$$

Thus

$$
e^{t N}=\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right)
$$

Here is a more subtle example. Let $A=\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right)$, so $f_{A}(t)=t^{2}+2 t+1=(t+1)^{2}$. Then -1 is the only eigenvalue, Then $\operatorname{Eig}_{-1}(A)=N S\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$, which is one dimensional, with basis $\binom{1}{1}$. Now we can do the following. Let $N:=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right)$, and observe that $N^{2}=0$ and that $A=D+N$, where $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, and $D N=N D$. Hence

$$
\begin{aligned}
e^{t A} & =e^{t D+t N} \\
& =e^{t D} e^{t N} \\
& =e^{-t}(I+t N)
\end{aligned}
$$

For 2×2 matrices, this always works. Here is a brief explanation.
Theorem: Let A be a 2×2 matrix with only a single eigenvalue λ. Let $D:=\lambda I$ and $N:=A-D$. Then $A=D+N, D N=N D$, and $N^{2}=0$. It follows that $e^{t A}=e^{t \lambda}(I+t N)$.
Proof: The only thing that requires proof here is the fact that $N^{2}=0$. Notice first that since λ is the only eigenvalue of $A, f_{A}(t)=(t-\lambda)^{2}$. Now we use the CayleyHamilton theorem, which says that if we plug A into its characteristic polynomial and compute using matrix algebra, the answer is 0 . In this case, we get $(A-\lambda I)^{2}=0$, $N^{2}=0$, which is what we want.
The Cayley-Hamilton theorem is strange and important; it is worth looking more closely.
Theorem (Cayley-Hamilton): Let A be an $n \times n$ matrix, and let $f_{A}(t)$ be its characteristic polynomial. Then $\left.f_{A}^{(} A\right)$ is the zero matrix.
Proof (when $n=2$). This theorem is difficult in general, but we can do the case $n=2$ by hand. Say $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $f_{A}(t)=t^{2}-(a+d) t+a d-b c$. Hence:

$$
\begin{aligned}
f_{A}(A) & =A^{2}-(a+d) A+(a d-b c) I \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}-(a+d)\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)+(a d-b c) I \\
& =\left(\begin{array}{ll}
a^{2}+b c & a b+b d \\
c a+d c & c b+d^{2}
\end{array}\right)-\left(\begin{array}{cc}
a^{2}+a d & a b+b d \\
a c+d c & a d+d^{2}
\end{array}\right)+\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right) \\
& =0
\end{aligned}
$$

A miracle! If you want to see why it is true for larger n, and how to use it to compute e^{A} in general, take Math 110.

