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Review We consider a homogeneous system of linear differential equations of the form

x′ = Ax, (1)

where A is an n×n matrix of continuous functions and x is a column vector of differ-
entiable functions.

• We know that the set of solutions is a vector space of dimension n. A basis for
this space is sometimes called a fundamental solution set to the equation.

• If (x1, · · ·xn) is such a basis, then the matrix X whose columns are the vectors
xi is sometimes called a fundamental matrix for the equation.

Applications This construction is useful for the following reasons. Theorem: Let X
be a fundamental matrix for the equation (1) above.

• If v is any vector in Rn, then the vector

y := Xv

is a solution to (1), and every solution is of this form.

• If C is an invertible matrix, then

X̃ := XC

is also a fundamental matrix for (1).

• In particular,
X̃ := XX(0)−1

is the fundamental matrix with X̃(0) = In.

• If x0 ∈ Rn, then
x := X̃x0

is the solution to equation (1) satisfying the initial condition x(0) = x0.
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Matrix Exponentials
When A is constant, matrix exponentials can be used to find a fundamental matrix for
the equation (1).
Theorem: If A is any n× n matrix (real or complex)

expA := eA := I +
A

1!
+
A2

2!
+ · · ·+ An

n!
+ · · ·

• The series above converges, for every matrix A.

• If A and B commute, then exp(A+B) = exp(A) expB.

• If S is invertible, then S(expA)S=1 = exp(SAS−1).

• If A is constant, X(t) := exp(tA), then X′(t) = A exp(tA) = AX(t).

In particular, if A is constant, then X(t) := exp(tA) is a fundamental matrix for the
equation (1).
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Example: Diagonalizable matrices

If D :=
(
λ1 0
0 λ2

)
is a diagonal matrix, then etD is easy to compute:

etD =
(
etλ1 0
0 etλ2

)
Example: Complex eigenvalues This formula works even if the eigenvalues λi are
complex, if we apply Euler’s formula. Sometimes it is easier to work directly. For
example, suppose

A :=
(

0 −1
1 0

)
Then A2 = −I and hence

etA = I +
tA

1!
+
t2A

2!
+
t3A

3!
+ · · ·

=
(
I − t2

2!
+
t4

4!
+ · · ·

)
+A

(
t

1!
− t3

3!
+ · · ·

)
= cos tI + sin tA

Thus

etA =
(

cos t − sin t
sin t cos t

)
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Example: nondiagonalizalbe matrices

Consider the matrix N :=
(

0 1
0 0

)
. Then N2 = 0, and hence

etN := I + tN +
t2N2

2!
+ · · · = I + tN.

Thus

etN =
(

1 t
0 1

)
Here is a more subtle example. LetA =

(
0 −1
1 −2

)
, so fA(t) = t2+2t+1 = (t+1)2.

Then −1 is the only eigenvalue, Then Eig−1(A) = NS

(
1 −1
1 −1

)
, which is one

dimensional, with basis
(

1
1

)
. Now we can do the following. Let N :=

(
1 −1
1 −1

)
,

and observe that N2 = 0 and that A = D + N , where D =
(
−1 0
0 −1

)
, and

DN = ND. Hence

etA = etD+tN

= etDetN

= e−t(I + tN)

For 2× 2 matrices, this always works. Here is a brief explanation.
Theorem: Let A be a 2 × 2 matrix with only a single eigenvalue λ. Let D := λI
and N := A − D. Then A = D + N , DN = ND, and N2 = 0. It follows that
etA = etλ(I + tN).
Proof: The only thing that requires proof here is the fact that N2 = 0. Notice first
that since λ is the only eigenvalue of A, fA(t) = (t − λ)2. Now we use the Cayley-
Hamilton theorem, which says that if we plug A into its characteristic polynomial and
compute using matrix algebra, the answer is 0. In this case, we get (A − λI)2 = 0,
N2 = 0, which is what we want.
The Cayley-Hamilton theorem is strange and important; it is worth looking more
closely.
Theorem (Cayley-Hamilton): Let A be an n × n matrix, and let fA(t) be its charac-
teristic polynomial. Then f (

AA) is the zero matrix.
Proof (when n = 2). This theorem is difficult in general, but we can do the case n = 2

by hand. Say A =
(
a b
c d

)
. Then fA(t) = t2 − (a+ d)t+ ad− bc. Hence:

fA(A) = A2 − (a+ d)A+ (ad− bc)I

=
(
a b
c d

)2

− (a+ d)
(
a b
c d

)
+ (ad− bc)I

=
(
a2 + bc ab+ bd
ca+ dc cb+ d2

)
−

(
a2 + ad ab+ bd
ac+ dc ad+ d2

)
+

(
ad− bc 0

0 ad− bc

)
= 0
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A miracle! If you want to see why it is true for larger n, and how to use it to compute
eA in general, take Math 110.
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