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The image of a function
Let f: V → W be a function.  

Given w in W, when can we solve the equation 
f(v) = w ?

Definition:  The image of f is the set of all w 
in W such that there is at least one v such 
that f(v) = w.

Thus Im(f) is a subset of W:  Im(f) ⊆ W.



Theorem:  Let T: Rm → Rn be a linear 
transformation.

The zero vector of Rn belongs to Im(T).

If Y and Y’ belong to Im(T), then so does Y+Y’.

If Y belongs to Im(T), then so does cY, for any 
number c.



Corollary:  The image of T is not empty and is 
closed under the formation of linear 
combinations.



Proof:

T takes the zero vector of Rm to the zero 
vector of Rn.  Hence the zero vector of Rn is 
in the image of T.

If Y and Y’ belong to the image, 

then there exist X and X’ with T(X) = Y 
and T(X’) = Y’,

then T(X+X’) = T(X) + T(X’) = Y+ Y’.

So Y+Y’ is in the image too.

Similarly, if T(X) = Y, then T(cX) = cY.



Spans and the column space

Theorem:  If A ∈ Mnm, then Im(TA) is the set 

of vectors which can be written as a linear 
combination of the columns of A.

Definition:  The span of a sequence          
(v1, v2, ...., vm) of vectors is the set of all 
vectors which can be written as some linear 
combination of (v1, v2, ...., vm)

Thus the image of TA is the span of the 
columns of A.



Proof of the theorem:
For each j, TA(ej) is the jth column of A.

Thus every column of A belongs to the 
image of TA.

Hence every linear combination of the 
columns of A belongs to the image.

If Y belongs to the image, then Y = TA(X) for 
some X.  But then

Y = x1 C1(A) + x2C2(A) + ... xm Cm(A),

so Y belongs to the column space of A.



Theorem:  Let T: Rm → Rn be a linear 
transformation.  Then the following are 
equivalent:

T is surjective

Im(T) = Rn.

rank(A) = n, where T = TA.



The kernel of a linear transformation

Definition:  If T: Rm → Rn is a linear 
transformation, the kernel of T is the set of 
all X such that T(X) = 0.  



Theorem:  Let T: Rm → Rn be a linear 
transformation.

The zero vector of Rm belongs to Ker(T).

If X and X’ belong to Ker(T), then so does 
X+X’.

If X belongs to Ker(T), then so does cX, for 
any number c. 



Corollary:  The kernel of a linear transformation 
is not empty and is closed under formation of 
linear combinations. 

Proof of theorem:  

if X and X’ are in the kernel, 

T(X+X’) = T(X) + T(X’) = 0 + 0 = 0.

T(cX) = cT(X) = c 0 = 0.



Theorem:  Let T: Rm → Rn be a linear 
transformation.  Then the following are 
equivalent:

T is injective

Ker(T) = {0}

rank(A) = m, where T = TA.



Definition:  A subset W of Rm is a linear 
subspace if it satisfies the following conditions:

it contains the zero vector,

if X and X’ belong to W, so does X+X’,

if X belongs to W and c is any number, cX 
belongs to W.



Equivalently:  A subset W of Rm is a linear 
subspace if is not empty and is closed under 
formation of linear combinations. 

Thus: If T is a linear transformation from Rm  to
Rn, then  Im(T) is a linear subspace of Rn and
Ker(T) is a linear subspace of Rm.



Theorem: Let T be a linear transformation.  
Suppose that T(X0) = Y0.  Then

{X : T(X) = Y0} = {X0 + X’ : X’ ∈ Ker(T)}.



Proof:  T(X) = Y0 iff 

T(X) = T(X0) iff

T(X-X0) = 0 iff

X’:= X-X0 ∈ Ker(T) iff

X = X0 + X’ with X’ ∈ Ker(T).




