Images, Kernels, and Linear Subspaces

September 14, 2007

The image of a function

- Let f: $V \rightarrow W$ be a function.
- Given w in W, when can we solve the equation

$$
f(v)=w ?
$$

- Definition: The image of f is the set of all w in W such that there is at least one v such that $f(v)=w$.
- Thus $\operatorname{Im}(f)$ is a subset of W : $\operatorname{Im}(f) \subseteq W$.
- Theorem: Let T: $\mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a linear transformation.
- The zero vector of R^{n} belongs to $\operatorname{Im}(\mathrm{T})$.
- If Y and Y^{\prime} belong to $\operatorname{Im}(T)$, then so does $Y+Y^{\prime}$.
- If Y belongs to $\operatorname{Im}(T)$, then so does $c Y$, for any number c.
- Corollary: The image of T is not empty and is closed under the formation of linear combinations.

Proof:

- T takes the zero vector of R^{m} to the zero vector of R^{n}. Hence the zero vector of R^{n} is in the image of T.
- If Y and Y^{\prime} belong to the image,
- then there exist X and X^{\prime} with $T(X)=Y$ and $T\left(X^{\prime}\right)=Y^{\prime}$,
- then $T\left(X+X^{\prime}\right)=T(X)+T\left(X^{\prime}\right)=Y+Y^{\prime}$.
- So $Y+Y^{\prime}$ is in the image too.
- Similarly, if $T(X)=Y$, then $T(c X)=c Y$.

Spans and the column space

- Theorem: If $A \in M_{n m}$, then $\operatorname{Im}\left(T_{A}\right)$ is the set of vectors which can be written as a linear combination of the columns of A.
- Definition: The span of a sequence ($\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{m}}$) of vectors is the set of all vectors which can be written as some linear combination of $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{m}}\right)$
- Thus the image of T_{A} is the span of the columns of A.

Proof of the theorem:

- For each $j_{,} T_{A}\left(e_{j}\right)$ is the j th column of A.
- Thus every column of A belongs to the image of T_{A}.
- Hence every linear combination of the columns of A belongs to the image.
- If Y belongs to the image, then $Y=T_{A}(X)$ for some X. But then
- $Y=x_{1} C_{1}(A)+x_{2} C_{2}(A)+\ldots x_{m} C_{m}(A)$,
- so Y belongs to the column space of A.
- Theorem: Let T: $\mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a linear transformation. Then the following are equivalent:
- T is surjective
- $\operatorname{Im}(T)=\mathrm{R}^{\mathrm{n}}$.
- $\operatorname{rank}(A)=n$, where $T=T_{A}$.

The kernel of a linear transformation

- Definition: If $T: R^{m} \rightarrow R^{n}$ is a linear transformation, the kernel of T is the set of all X such that $T(X)=0$.
- Theorem: Let T: $\mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a linear transformation.
- The zero vector of R^{m} belongs to $\operatorname{Ker}(\mathrm{T})$.
- If X and X^{\prime} belong to $\operatorname{Ker}(T)$, then so does $X+X^{\prime}$.
- If X belongs to $\operatorname{Ker}(T)$, then so does $c X$, for any number c.
- Corollary: The kernel of a linear transformation is not empty and is closed under formation of linear combinations.
- Proof of theorem:
- if X and X^{\prime} are in the kernel,

$$
\begin{aligned}
& T\left(X+X^{\prime}\right)=T(X)+T\left(X^{\prime}\right)=0+0=0 \\
& T(c X)=c T(X)=c 0=0 .
\end{aligned}
$$

- Theorem: Let T: $\mathrm{R}^{\mathrm{m}} \rightarrow \mathrm{R}^{\mathrm{n}}$ be a linear transformation. Then the following are equivalent:
- T is injective
- $\operatorname{Ker}(T)=\{0\}$
- $\operatorname{rank}(A)=m$, where $T=T_{A}$.
- Definition: A subset W of R^{m} is a linear subspace if it satisfies the following conditions:
- it contains the zero vector,
- if X and X^{\prime} belong to W, so does $X+X^{\prime}$,
- if X belongs to W and c is any number, $c X$ belongs to W .
- Equivalently: A subset W of R^{m} is a linear subspace if is not empty and is closed under formation of linear combinations.
- Thus: If T is a linear transformation from R^{m} to R^{n}, then $\operatorname{Im}(T)$ is a linear subspace of R^{n} and $\operatorname{Ker}(T)$ is a linear subspace of R^{m}.
- Theorem: Let T be a linear transformation. Suppose that $T\left(X_{0}\right)=Y_{0}$. Then

$$
\text { - }\left\{X: T(X)=Y_{0}\right\}=\left\{X_{0}+X^{\prime}: X^{\prime} \in \operatorname{Ker}(T)\right\} \text {. }
$$

- Proof: $T(X)=Y_{0}$ iff
- $T(X)=T\left(X_{0}\right)$ iff
- $T\left(X-X_{0}\right)=0$ iff
- $X^{\prime}:=X-X_{0} \in \operatorname{Ker}(T)$ iff
- $X=X_{0}+X^{\prime}$ with $X^{\prime} \in \operatorname{Ker}(T)$.

