The inverse of a Linear Transformation

September 10, 2007

Recall:

- Let S and T be sets.
- A mapping or function from S to T is a rule which assigns to every element s of S a (welldefined) element $f(s)$ of T.
- The set S is called the source or domain of f. The set T is called the target or codomain of f.
- A function $f: S \rightarrow T$ is said to be invertible if for every \dagger in T there is a unique s in S such that $f(s)=t$.

A closer look at $f(s)=\dagger$

- f is said to be injective (one-to-one) if for every t there is at most one s such that $f(s)=t$.
- f is said to be surjective (onto) if for every \dagger there is at least one such that $f(s)=t$.
- f is said to be bijective if for every t there is exactly one s such that $f(s)=t$.

Inverse functions

Theorem: Let f: $S \rightarrow T$ be a function. Then the following conditions are equivalent.

- f is surjective and injective.
- f is bijective.
- There exists a function $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{S}$ such that

$$
\begin{aligned}
& \text { - } g(f(s))=s \text { for all } s \text { and } \\
& \\
& \text { - } f(g(t))=t \text { for all } t .
\end{aligned}
$$

- This g is called the inverse of the function f .

The inverse of a linear transformation

- Theorem: Let A be an $n \times m$ matrix. Then $T_{A}: R^{m} \rightarrow R^{n}$ is invertible if and only if $n=m$ $=\operatorname{rank}(A)$. If this is the case, its inverse $T_{A}{ }^{-1}$ is also linear.

Proof: Let r be the rank of A.

- If $r<m$, then there are $m-r$ free variables.
- Hence the equation $T_{A}(x)=0$ has infinitely many solutions and T_{A} could not be injective.
- Thus if T_{A} is injective $m \leq r$, hence $m=r$.
- Conversely: if $m=r, T_{A}$ is injective.
- If $r<n$, then there is some y such that the equation $T_{A}(x)=y$ is inconsistent. Hence T_{A} will not be surjective.
- Hence if T_{A} is surjective $n \leq r$, hence $n=r$.
- Conversely, if $n=r, T_{A}$ is surjective.
- Thus if T_{A} is bijective, $n=r=m$.

Conclusion: If A is an $n \times m$ matrix of rank r, 1. T_{A} is injective if and only if $m=r$.
2. T_{A} is surjective if and only if $n=r$.

Corollary: If $n=m$, then the following are equivalent:

1. T_{A} is injective (i.e., $r=m$).
2. T_{A} is surjective (i.e., $r=n$).
3. T_{A} is bijective.

Computing $T_{A}{ }^{-1}$

- If T_{A} is invertible, then, $\left.\left(T_{A}\right)^{-1}=T_{\left(A^{-1}\right.}\right)$, another linear transformation, where A^{-1} is computed as follows:
- Form the matrix $\left(A \mid I_{n}\right)$.
- Put $\left(A \mid I_{n}\right)$ in reduced row echelon form. Then $\operatorname{rref}\left(A \mid I_{n}\right)=\left(I_{n} \mid A^{-1}\right)$.
- See syllabus web page for a proof of this fact.

