The inverse of a Linear Transformation

September 10, 2007

Recall:

Let S and T be sets.

A <u>mapping</u> or <u>function</u> from S to T is a rule which assigns to every element s of S a (welldefined) element f(s) of T.

The set S is called the <u>source</u> or <u>domain</u> of f.
The set T is called the <u>target</u> or <u>codomain</u> of f.

A function f: S → T is said to be <u>invertible if</u>
 for every t in T there is a unique s in S such that f(s) = t.

A closer look at f(s) = t

- If is said to be <u>injective</u> (one-to-one) if for every t there is **at most one** s such that f(s) = t.
- It is said to be <u>surjective</u> (onto) if for every t there is **at least one** s such that f(s) = t.
- Is said to be <u>bijective</u> if for every t there is exactly one s such that f(s) = t.

Inverse functions

Theorem: Let $f: S \rightarrow T$ be a function. Then the following conditions are equivalent. Is surjective and injective. f is bijective. \odot There exists a function g: T \rightarrow S such that \oslash q(f(s)) = s for all s and f(g(t)) = t for all t. This g is called the inverse of the function f.

The inverse of a linear transformation

Theorem: Let A be an n x m matrix. Then
 T_A: R^m → Rⁿ is invertible if and only if n = m
 = rank(A). If this is the case, its inverse T_A⁻¹
 is also linear.

Proof: Let r be the rank of A.

 \odot If r < m, then there are m-r free variables.

Hence the equation $T_A(x) = 0$ has infinitely many solutions and T_A could not be injective.

Thus if T_A is injective m ≤ r, hence m = r.

• Conversely: if m = r, T_A is injective.

If r < n, then there is some y such that the equation T_A(x) = y is inconsistent. Hence T_A will not be surjective.

One of T_A is surjective n ≤ r, hence n = r.

Sonversely, if n=r, T_A is surjective.

Thus if T_A is bijective, n = r = m.

Conclusion: If A is an n x m matrix of rank r,

1.T_A is injective if and only if m = r. 2.T_A is surjective if and only if n = r.

Corollary: If n = m, then the following are equivalent:

- 1. T_A is injective (i.e., r = m).
- 2. T_A is surjective (i.e., r = n).
- 3. T_A is bijective.

Computing T_A^{-1}

If T_A is invertible, then, $(T_A)^{-1} = T_{(A}^{-1})$, another linear transformation, where A⁻¹ is computed as follows:

 \odot Form the matrix (A|I_n).

Then rref(A|I_n) in reduced row echelon form.
Then rref(A|I_n) = (I_n|A⁻¹).

See syllabus web page for a proof of this fact.