Matrices and Linear Transformations

September 7, 2007

Functions and mappings

Let S and T be sets.

A <u>mapping</u> or <u>function</u> from S to T is a rule which assigns to every element of S a (welldefined) element of T.

The set S is called the <u>source</u> or <u>domain</u> of f.
The set T is called the <u>target</u> or <u>codomain</u> of f.

If s is an element of S, the value (output) of f at s is denoted by f(s).

Notation

I : S → T

I : S → T

I : S → f(s)

I : f(s)

Inverse functions

 A function f: S → T is said to be <u>invertible if</u> for every t in T there is a unique s in S such that f(s) = t.

Then there is a (unique) function g: $T \rightarrow S$ such that g(t) is the s such that f(s) = t.

This g is called the inverse of the function f.

Linear transformations

Let A be an n x m matrix.

- O Define a function T_A: R^m → Rⁿ by the rule:
 $X \mapsto AX$ (matrix multiplication).
- A function T: R^m → Rⁿ is said to be a <u>linear</u> <u>transformation</u> if there exists a matrix A such that T = T_A.

The inverse of a linear transformation

Theorem: Let A be an n x m matrix. Then
T_A is invertible if and only if n = m = rank(A).

We will discuss how to compute the inverse later.

Key formula:

The standard frame for R^m is the sequence of vectors (e₁, e₂,, e_m), where e_j is the vector with 1 in the jth place and zeroes everywhere else.

Then if A is an n x m matrix, T_A(e_j) is the jth column of A:

 $T_A(e_j) = C_j(A).$

Drawing matrices

One way to draw a matrix is just to draw its columns.

This shows the effect of T_A on the standard frame.