Matrices and Linear Transformations

September 7, 2007

Functions and mappings

- Let S and T be sets.
- A mapping or function from S to T is a rule which assigns to every element of S a (welldefined) element of T.
- The set S is called the source or domain of f. The set T is called the target or codomain of f.
- If s is an element of S, the value (output) of f at s is denoted by $f(s)$.

Notation

$$
\begin{aligned}
& f: S \rightarrow T \\
& s \mapsto f(s) \\
& t=f(s)
\end{aligned}
$$

Inverse functions

- A function $f: S \rightarrow T$ is said to be invertible if for every t in T there is a unique s in S such that $f(s)=t$.
- Then there is a (unique) function $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{S}$ such that $g(t)$ is the s such that $f(s)=t$.
- This g is called the inverse of the function f .

Linear transformations

- Let A be an $n \times m$ matrix.
- Define a function $T_{A}: R^{m} \rightarrow R^{n}$ by the rule: $X \mapsto A X$ (matrix multiplication).
- A function $T: R^{m} \rightarrow R^{n}$ is said to be a linear transformation if there exists a matrix A such that $T=T_{A}$.

The inverse of a linear transformation

- Theorem: Let A be an $n \times m$ matrix. Then T_{A} is invertible if and only if $n=m=\operatorname{rank}(A)$.
- We will discuss how to compute the inverse later.

Key formula:

- The standard frame for R^{m} is the sequence of vectors ($e_{1}, e_{2}, \ldots . ., e_{m}$), where e_{j} is the vector with 1 in the $\mathrm{j}^{\text {th }}$ place and zeroes everywhere else.
- Then if A is an $n \times m$ matrix, $T_{A}\left(e_{j}\right)$ is the $j^{\text {th }}$ column of A :
- $T_{A}\left(e_{j}\right)=C_{j}(A)$.

Drawing matrices

- One way to draw a matrix is just to draw its columns.
- This shows the effect of T_{A} on the standard frame.

