Linear Differential Equations

November 7, 2007

Notation

We work over an open interval:
$I:=(a, b):=\{t \in \mathbf{R}: a<t<b\}$.
Let $C^{k}(I):=\left\{f: I \rightarrow \mathbf{R}: f, f^{\prime} \ldots f^{(k)}\right.$ exist and are continuous $\}$.
Note that $C^{k}(I)$ is a linear subspace of the vector space of all functions from / to \mathbf{R}. We could also consider complex-valued functions, which form a vector space over the field of complex numbers.

The main existence and uniqueness theorem

Theorem
Given $p_{1}, p_{2}, \ldots p_{n} \in C^{0}(I)$ and $f \in C^{n}(I)$, let

$$
L(f):=f^{(n)}+p_{1} f^{(n-1)}+\cdots+p_{n} f .
$$

Then:

- L is a linear transformation: $C^{n}(I) \rightarrow C^{0}(I)$.
- Given $g \in C^{0}(I), t_{0} \in I$, and $y_{0}, y_{1}, \ldots y_{n-1} \in \mathbf{R}$, there exists a unique $f \in C^{n}(I)$ such that
- $L(f)=g$, and
- $f^{(i)}\left(t_{0}\right)=y_{i}$ for $i=0,1, \ldots, n-1$.

Consequences

Recall that $\operatorname{Ker}(L):=\{f: L(f)=0\}$. That is, $\operatorname{Ker}(L)$ is the set of solutions to the homgeneous equation

$$
f^{(n)}+p_{1} f^{(n-1)}+\cdots+p_{n} f=0
$$

Corollary
$\operatorname{Ker}(L)$ is a linear subspace of the vector space $C^{n}(I)$.
Corollary
For each $t_{0} \in I$,

$$
\begin{gathered}
E_{t_{0}}: \operatorname{Ker}(L) \rightarrow \mathbf{R}^{n} \\
f \mapsto\left(f\left(t_{0}\right), f^{\prime}\left(t_{0}\right), \ldots, f^{(n-1)}\left(t_{0}\right)\right)
\end{gathered}
$$

is an isomorphism.

Corollary
The operator $L: C^{n}(I) \rightarrow C^{0}(I)$ is surjective, and its kernel is a linear subspace of $C^{n}(I)$ of dimension n.

Corollary
If $\left(f_{1}, \cdots f_{n}\right)$ is a linearly independent sequence in the kernel $\operatorname{Ker}(L)$ of L then $\left(f_{1}, \ldots, f_{n}\right)$ forms a basis for $\operatorname{Ker}(L)$.

The Wronskian

Corollary

Let $\left(f_{1}, \ldots, f_{n}\right)$ be a sequence of elements of $\operatorname{Ker}(L)$, and let

$$
W\left(f_{1}, \ldots, f_{n}\right):=\operatorname{det}\left(\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\cdots & & & \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right) .
$$

Then the following conditions are equivalent:

- For some $t_{0} \in I, W\left(f_{1}, \ldots, f_{n}\right)\left(t_{0}\right) \neq 0$.
- For some $t_{0} \in I$, the sequence of vectors

$$
E_{t_{0}}\left(f_{1}\right), E_{t_{0}}\left(f_{2}\right), \ldots, E_{t_{0}}\left(f_{n}\right)
$$

in \mathbf{R}^{n} is linearly independent.

- $\left(f_{1}, \ldots, f_{n}\right)$ is a basis for $\operatorname{Ker}(L)$.
- $W\left(f_{1}, \ldots, f_{n}\right)(t) \neq 0$ for all $t \in I$.

Abel's theorem

Theorem
If $\left(f_{1}, \ldots, f_{n}\right)$ is a sequence of elements of $\operatorname{Ker}(L)$ and $W:=W\left(f_{1}, \ldots, f_{n}\right)$, then $W^{\prime}+p W=0$. Hence $W=c e^{-P}$, where c is some constant and $P^{\prime}=p_{1}$.

Note that this proves again the fact that W is either always zero or never zero.

Constant Coefficients

If p_{1}, \ldots, p_{n} are constant and $g=0$, a fundamental solution set to the equation can be found fairly easily. One method is to try exponential solutions of the form $e^{r t}$.
Theorem
Suppose r is a root of the polynomial

$$
X^{n}+p_{1} X^{n-1}+\cdots p_{n}=0
$$

Then $e^{r t}$ belongs to the kernel of L. If r has multiplicity m, then the functions

$$
e^{r t}, t e^{r t}, \ldots, t^{m-1} e^{r t}
$$

all belong the the nullspace, and form a linearly independent sequence.

Example

Consider the equation $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=0$. The corresponding characeristic equation is $r^{3}-2 r^{2}+r=0$.
This factors:

$$
r^{3}-2 r^{+} r=r(r 2-2 r+1)=r(r-1)^{2}
$$

So a basis for the solution space should be ($e^{0}, e^{t}, t e^{t}$). Let's compute the Wronskian:

$$
\begin{aligned}
W & :=\left|\begin{array}{ccc}
1 & e^{t} & t e^{t} \\
0 & e^{t} & e^{t}+t e^{t} \\
0 & e^{t} & 2 e^{t}+t e^{t}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & e^{t} & t e^{t} \\
0 & e^{t} & e^{t}+t e^{t} \\
0 & 0 & e^{t}
\end{array}\right| \\
& =e^{2 t}
\end{aligned}
$$

Note that $W^{\prime}-2 W=0$.

Another example

Recall the damped spring equation of the form

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

The characteristic equation is $r^{2}+p r+q=0$, which has roots:

$$
r=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}
$$

For example, if $p=2$ and $q=5$, we get

$$
r=-1 \pm 2 i
$$

which leads to solutions $\left(e^{-t} \sin 2 t, e^{-t} \cos 2 t\right)$.

