Linear Differential Equations

November 7, 2007

Notation

We work over an open interval:

 $I := (a, b) := \{t \in \mathbf{R} : a < t < b\}.$

Let $C^k(I) := \{f \colon I \to \mathbf{R} : f, f' \cdots f^{(k)} \text{ exist and are continuous } \}.$

Note that $C^k(I)$ is a linear subspace of the vector space of all functions from *I* to **R**. We could also consider complex-valued functions, which form a vector space over the field of complex numbers.

The main existence and uniqueness theorem

Theorem

Given $p_1, p_2, \ldots p_n \in C^0(I)$ and $f \in C^n(I)$, let

$$L(f) := f^{(n)} + p_1 f^{(n-1)} + \cdots + p_n f.$$

Then:

- L is a linear transformation: $C^n(I) \rightarrow C^0(I)$.
- Given g ∈ C⁰(I), t₀ ∈ I, and y₀, y₁, ... y_{n-1} ∈ R, there exists a unique f ∈ Cⁿ(I) such that
 - L(f) = g, and
 - $f^{(i)}(t_0) = y_i$ for i = 0, 1, ..., n-1.

Consequences

Recall that $Ker(L) := \{f : L(f) = 0\}$. That is, Ker(L) is the set of solutions to the homgeneous equation

$$f^{(n)} + p_1 f^{(n-1)} + \cdots + p_n f = 0.$$

Corollary

Ker(L) is a linear subspace of the vector space $C^n(I)$.

Corollary

For each $t_0 \in I$,

$$E_{t_0} \colon \mathit{Ker}(L) \to \mathbf{R}^n$$

 $f \mapsto \left(f(t_0), f'(t_0), \dots, f^{(n-1)}(t_0) \right)$

is an isomorphism.

Corollary

The operator L: $C^n(I) \rightarrow C^0(I)$ is surjective, and its kernel is a linear subspace of $C^n(I)$ of dimension *n*.

Corollary

If (f_1, \dots, f_n) is a linearly independent sequence in the kernel Ker(L) of L then (f_1, \dots, f_n) forms a basis for Ker(L).

The Wronskian

Corollary

Let (f_1, \ldots, f_n) be a sequence of elements of Ker(L), and let

$$W(f_1, \dots, f_n) := \det \begin{pmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{pmatrix}$$

Then the following conditions are equivalent:

- For some $t_0 \in I$, $W(f_1, ..., f_n)(t_0) \neq 0$.
- For some $t_0 \in I$, the sequence of vectors

$$E_{t_0}(f_1), E_{t_0}(f_2), \ldots, E_{t_0}(f_n)$$

in \mathbf{R}^n is linearly independent.

• (f_1, \ldots, f_n) is a basis for Ker(L).

•
$$W(f_1,\ldots,f_n)(t) \neq 0$$
 for all $t \in I$.

Theorem

If $(f_1, ..., f_n)$ is a sequence of elements of Ker(L) and $W := W(f_1, ..., f_n)$, then W' + pW = 0. Hence $W = ce^{-P}$, where c is some constant and $P' = p_1$.

Note that this proves again the fact that W is either always zero or never zero.

Constant Coefficients

If p_1, \ldots, p_n are constant and g = 0, a fundamental solution set to the equation can be found fairly easily. One method is to try exponential solutions of the form e^{rt} .

Theorem

Suppose r is a root of the polynomial

$$X^n + p_1 X^{n-1} + \cdots p_n = 0.$$

Then e^{rt} belongs to the kernel of L. If r has multiplicity m, then the functions

$$e^{rt}, te^{rt}, \ldots, t^{m-1}e^{rt}$$

all belong the the nullspace, and form a linearly independent sequence.

Example

Consider the equation y''' - 2y'' + y' = 0. The corresponding characeristic equation is $r^3 - 2r^2 + r = 0$. This factors:

$$r^{3}-2r^{+}r=r(r^{2}-2r+1)=r(r-1)^{2}$$

So a basis for the solution space should be (e^0, e^t, te^t) . Let's compute the Wronskian:

$$W := \begin{vmatrix} 1 & e^{t} & te^{t} \\ 0 & e^{t} & e^{t} + te^{t} \\ 0 & e^{t} & 2e^{t} + te^{t} \end{vmatrix}$$
$$= \begin{vmatrix} 1 & e^{t} & te^{t} \\ 0 & e^{t} & e^{t} + te^{t} \\ 0 & 0 & e^{t} \end{vmatrix}$$
$$= e^{2t}$$

Note that W' - 2W = 0.

Another example

Recall the damped spring equation of the form

$$y'' + py' + qy = 0.$$

The characteristic equation is $r^2 + pr + q = 0$, which has roots:

$$r=\frac{-p\pm\sqrt{p^2-4q}}{2}$$

For example, if p = 2 and q = 5, we get

$$r=-1\pm 2i$$
,

which leads to solutions ($e^{-t}sin2t$, $e^{-t}cos2t$).