Fourier Series: Summary

December 4, 2007

Fix $L>0$ and let $I:=[-L, L]$, that is, the set of real numbers x such that $-L \leq x \leq L$.

- Let \mathcal{P} be the set of piecewise continuous fuctions from I to \mathbf{R} (a linear subspace of the vector space of all such functions).
- For $f, g \in \mathcal{P}$, let $(f \mid g):=\frac{1}{L} \int_{-L}^{L} f g$.
- $u_{n}(x):=\cos \left(\frac{n \pi x}{L}\right)$ for $n=0,1,2, \ldots$.
- $v_{n}(x):=\sin \left(\frac{n \pi x}{L}\right)$ for $n=1,2,3 \ldots$
- $W_{N}:=\operatorname{span}\left\{u_{0}, u_{1}, \ldots u_{N}, v_{1}, v_{2}, \ldots v_{N}\right\}$.

Theorem: W_{N} is a linear subspace of \mathcal{P} of dimension $2 N+1$, and $\left(u_{0}, \ldots u_{N}, v_{0}, \ldots v_{N}\right)$ is an orthogonal basis for W_{N}. Moreover

$$
\left\|u_{n}\right\|^{2}=\left\|v_{n}\right\|^{2}=1 \text { for } n>0, \text { and }\left\|u_{0}\right\|^{2}=2
$$

Corollary: If $f \in \mathcal{P}$, let

$$
\begin{gathered}
a_{n}:=\left(f \mid u_{n}\right)=\frac{1}{L} \int_{-L}^{L} f(x) u_{n}(x) d x \\
b_{n}:=\left(f \mid v_{n}\right)=\frac{1}{L} \int_{-L}^{L} f(x) v_{n}(x) d x \\
\pi_{N}(f):=\frac{a_{0}}{2} u_{0}+a_{1} u_{1}+\cdots a_{N} u_{N}+b_{1} v_{1}+\cdots b_{N} v_{N}
\end{gathered}
$$

Then $\pi_{N}(f)$ is the orthogonal projection of f onto W_{N}.

Odd and Even functions

Definition:

- $f: I \rightarrow \mathbf{R}$ is even if $f(-x)=f(x)$ for all x.
- $f: I \rightarrow \mathbf{R}$ is odd if $f(-x)=-f(x)$ for all x.

Let $\mathcal{P}_{\text {ev }}$ be the set of all even elements of \mathcal{P}, and let $\mathcal{P}_{\text {odd }}$ be the set of odd elements of \mathcal{P}.

Proposition:

1. $\mathcal{P}_{\text {ev }}$ and $\mathcal{P}_{\text {odd }}$ are linear subspaces of \mathcal{P}.
2. $\mathcal{P}_{\text {ev }} \cap \mathcal{P}_{\text {odd }}=\{\mathbf{0}\}$. Any $f \in \mathcal{P}$ can be written uniquely as a sum $f=$ $f_{e v}+f_{\text {odd }}$, where $f_{e v} \in \mathcal{P}_{\text {ev }}$ and $f_{\text {odd }} \in \mathcal{P}_{\text {odd }}$.
3. $\mathcal{P}_{e v} \perp \mathcal{P}_{\text {odd }}$.
4. If $f \in \mathcal{P}_{\text {odd }}, \int_{-L}^{L} f=0$, and if $f \in \mathcal{P}_{e v}, \int_{-L}^{L} f=2 \int_{0}^{L}$.
5. A function $f:[0, L) \rightarrow \mathbf{R}$ can be extended uniquely as a periodic even function with period $2 L$. Alternatively, it can be extended uniquely as a periodic odd function with period $2 L$.
6. If $f \in \mathcal{P}_{\text {odd }}$, then $a_{n}=0$ for all n and

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

7. If $f \in \mathcal{P}_{e v}$, then $b_{n}=0$ for all n and

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Theorem: If $f \in \mathcal{P}$, let $f_{N}:=\pi_{N}(f)$, that is:
$f_{N}=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+\cdots+a_{N} \cos \left(\frac{N \pi x}{L}\right)+b_{1} \sin \left(\frac{\pi x}{L}\right)+\cdots+b_{N} \sin \left(\frac{N \pi x}{L}\right)$.

1. $\lim _{N \rightarrow \infty}\left\|f-f_{N}\right\|=0$, where $\|h\|:=\sqrt{(h \mid h)}$ for any h.
2. If f and f^{\prime} are piecewise continuous, then for $-L<x<L$,

$$
\lim _{N \rightarrow \infty} f_{N}(x)=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
$$

3. If f and f^{\prime} are piecewise continuous, then for $x= \pm L$,

$$
\lim _{N \rightarrow \infty} f_{N}(x)=\frac{f\left(L^{-}\right)+f\left(-L^{+}\right)}{2}
$$

