Eigenvectors

Theorem: Let (w_1, \ldots, w_m) be nonzero eigenvectors of A corresponding to distinct eigenvalues. Then (w_1, \ldots, w_m) is linearly independent.

Proof: We use induction on m. If m = 1 the statement is trivial, since w_1 is by assumption not zero, hence (w_1) is linearly independent. Assume that the theorem is true for m - 1. To prove it for m, we have to show that if $\sum a_i w_i = 0$, then each $a_i = 0$. We know that each w_i is an eigenvector with eigenvalue λ_i , so $Aw_i = \lambda_i w_i$. We have the following equations:

$$a_1w_1 + a_2w_2 + \cdots + a_mw_m = 0$$

$$A(a_1w_1 + a_2w_2 + \cdots + a_mw_m) = A0$$

$$a_1Aw_1 + a_2Aw_2 + \cdots + a_mAw_m = 0$$

$$a_1\lambda_1w_1 + a_2\lambda_2w_2 + \cdots + a_m\lambda_mw_m = 0$$

On the other hand, if we multiply the top equation by λ_m , we get

$$a_1\lambda_m w_1 + a_2\lambda_m w_2 + \cdots + a_m\lambda_m w_m = 0$$

Subtracting this equation from the last equation above, we get:

$$a_{1}(\lambda_{1} - \lambda_{m})w_{1} + a_{2}(\lambda_{2} - \lambda_{m})w_{2} + \cdots + a_{m-1}(\lambda_{m-1} - \lambda_{m})w_{m-1} = 0$$

But we already know that the sequence (w_1, \ldots, w_{m-1}) is linearly independent, so each coefficient above must vanish: $a_i(\lambda_i - \lambda_m) = 0$ for $i = 1, \ldots, m - 1$. Since $\lambda_i - \lambda_m \neq 0$, this implies that $a_i = 0$ for $i = 1, \ldots, m - 1$. Now the first equation reduced to the statement that $a_m w_m = 0$, and since $w_m \neq 0$, this implies that $a_m = 0$ too.

Note that this gives another proof that an $n \times n$ matrix has at most n eigenvalues.

Theorem: Let $\lambda_1, \ldots, \lambda_r$ be the (distinct) eigenvalues of A and for each i, let β_i be a basis for $Eig_{\lambda_i}(A)$. Then the union (concatenation) β of all the β_i is linearly independent.