Eigenvectors

Theorem: Let $\left(w_{1}, \ldots, w_{m}\right)$ be nonzero eigenvectors of A corresponding to distinct eigenvalues. Then $\left(w_{1}, \ldots, w_{m}\right)$ is linearly independent.

Proof: We use induction on m. If $m=1$ the statement is trivial, since w_{1} is by assumption not zero, hence $\left(w_{1}\right)$ is linearly independent. Assume that the theorem is true for $m-1$. To prove it for m, we have to show that if $\sum a_{i} w_{i}=0$, then each $a_{i}=0$. We know that each w_{i} is an eigenvector with eigenvalue λ_{i}, so $A w_{i}=\lambda_{i} w_{i}$. We have the following equations:

$$
\begin{aligned}
a_{1} w_{1}+a_{2} w_{2}+\cdots a_{m} w_{m} & =0 \\
A\left(a_{1} w_{1}+a_{2} w_{2}+\cdots a_{m} w_{m}\right) & =A 0 \\
a_{1} A w_{1}+a_{2} A w_{2}+\cdots a_{m} A w_{m} & =0 \\
a_{1} \lambda_{1} w_{1}+a_{2} \lambda_{2} w_{2}+\cdots a_{m} \lambda_{m} w_{m} & =0
\end{aligned}
$$

On the other hand, if we multiply the top equation by λ_{m}, we get

$$
a_{1} \lambda_{m} w_{1}+a_{2} \lambda_{m} w_{2}+\cdots a_{m} \lambda_{m} w_{m}=0
$$

Subtracting this equation from the last equation above, we get:

$$
a_{1}\left(\lambda_{1}-\lambda_{m}\right) w_{1}+a_{2}\left(\lambda_{2}-\lambda_{m}\right) w_{2}+\cdots a_{m-1}\left(\lambda_{m-1}-\lambda_{m}\right) w_{m-1}=0
$$

But we already know that the sequence $\left(w_{1}, \ldots w_{m-1}\right)$ is linearly independent, so each coefficient above must vanish: $a_{i}\left(\lambda_{i}-\lambda_{m}\right)=0$ for $i=1, \ldots m-1$. Since $\lambda_{i}-\lambda_{m} \neq 0$, this implies that $a_{i}=0$ for $i=1 \ldots m-1$. Now the first equation reduced to the statement that $a_{m} w_{m}=0$, and since $w_{m} \neq 0$, this implies that $a_{m}=0$ too.

Note that this gives another proof that an $n \times n$ matrix has at most n eigenvalues.

Theorem: Let $\lambda_{1}, \ldots \lambda_{r}$ be the (distinct) eigenvalues of of A and for each i, let β_{i} be a basis for $\operatorname{Eig}_{\lambda_{i}}(A)$. Then the union (concatenation) β of all the β_{i} is linearlry independent.

