Eigenvalues

Definition: Let A be a matrix and let $\lambda \in \mathbf{R}$.

 $E_{\lambda} := \{X : AX = \lambda X\}$ is a linear subspace of M_{n1} , called the λ -eigenspace of A.

Elements of E_{λ} are called the λ -eigenvectors of A.

A number λ is said to be an *eigenvalue* of A if there is some nonzero λ -eigenvector of A.

Theorem: $E_{\lambda} = NS(A - \lambda I) = NS(\lambda I - A).$ Hence the following are equivalent:

- λ is an eigenvalue of A.
- $NS(\lambda I A) \neq \{\mathbf{0}\}.$
- $\lambda I A$ is singular.
- $\det(A \lambda I) = 0.$

Theorem-Definition: The characteristic polynomial of A is the expression $f_A(t) := \det(A - tI)$. It is a polynomial of degree n, and in fact:

$$f_A(t) = (-t)^n + (-t)^{n-1} \operatorname{tr}(A) + \dots + \operatorname{det}(A).$$

Corollary: The eigenvalues of A are the roots of its characteristic polynomial.

Theorem: Similar matrices have the same characteristic polynomial. That is, if S is an invertible matrix and $B = S^{-1}AS$, then $f_B(t) = f_A(t)$.