Eigenvalues

Definition: Let A be a matrix and let $\lambda \in \mathbf{R}$.
$E_{\lambda}:=\{X: A X=\lambda X\}$ is a linear subspace of $M_{n 1}$, called the λ-eigenspace of A.

Elements of E_{λ} are called the λ-eigenvectors of A.
A number λ is said to be an eigenvalue of A if there is some nonzero λ eigenvector of A.

Theorem: $E_{\lambda}=N S(A-\lambda I)=N S(\lambda I-A)$.
Hence the following are equivalent:

- λ is an eigenvalue of A.
- $N S(\lambda I-A) \neq\{\mathbf{0}\}$.
- $\lambda I-A$ is singular.
- $\operatorname{det}(A-\lambda I)=0$.

Theorem-Definition: The characteristic polynomial of A is the expression $f_{A}(t):=\operatorname{det}(A-t I)$. It is a polynomial of degree n, and in fact:

$$
f_{A}(t)=(-t)^{n}+(-t)^{n-1} \operatorname{tr}(A)+\cdots+\operatorname{det}(A)
$$

Corollary: The eigenvalues of A are the roots of its characteristic polynomial.

Theorem: Similar matrices have the same characteristic polynomial. That is, if S is an invertible matrix and $B=S^{-1} A S$, then $f_{B}(t)=f_{A}(t)$.

