How to diagonalize a matrix

Let A be an $n \times n$ matrix.

1. Compute the characteristic polynomial

$$f_A(x) := det(A - xA).$$

This is a monic polynomial of degree n.

- 2. Find the roots $\lambda_1 \ldots \lambda_r m$ of $f_A(X)$, together with their multiplicities $m_1, \ldots m_r$. There are at most *n* roots so $r \leq n$. In fact $m_1 + \cdots m_r = n$, if you are willing to include complex roots if necessary. These roots are the *eigenvalues* of *A*.
- 3. For each *i*, find an ordered basis β_i for the $Eig_{\lambda_i}(A) = NS(\lambda_i I A)$, using Gauss elimination. Each β_i will be a list of d_i vectors, where d_i is the dimension of $Eig_{\lambda_i}(A)$.
- 4. Assemble all the bases you constructed above into single list β of vectors. There will be a total of $d_1 + d_2 + \cdots + d_m$ elements in this list.
- 5. **Theorem:** The sequence β is automatically linearly independent. The matrix A is diagonalizable if and only if $d_1 + \cdots + d_r = n$, and this is true if and only if $d_i = m_i$ for all *i*. If this is the case, β is a basis for \mathbf{R}^n , and the matrix S whose columns are the vectors in β vectors satisfies AS = SD, with D diagonal.

Note: Each $d_i \ge 1$, so if all the roots of $f_A(X)$ are distinct, then m = n, each $d_i = 1$, $\sum d_i = n$, and A is automatically diagonalizable.