Determinants

Theorem: For each n, there exists a unique function det: $M_{n \times n} \rightarrow \mathbf{R}$ with the following properties

1. $\operatorname{det} I=1$
2. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
3. $\operatorname{det} A=0$ if and only if A is singular.
4. $\operatorname{det} A$ is unchanged by an elementary row operation of the first type.
5. $\operatorname{det} A^{T}=\operatorname{det} A$.
6. For any i,

$$
\operatorname{det} A=\sum_{j}(-1)^{i+j} a_{i j} M_{i j},
$$

where $M_{i j}$ is the determinant of the $n-1$ by $n-1$ matrix obtained by deleting the i th row and j th column from A.

Here is another characterization of the determinant:
Theorem: For each n, there exists a unique function det: $M_{n \times n} \rightarrow \mathbf{R}$ with the follwoing properties:

1. $\operatorname{det} I=1$.
2. det is a linear function of each variable. That is, if all the variables v_{i} except for the j th is fixed, then the resulting function of v_{j} is linear in v_{j}.
3. $\operatorname{det}\left(v_{1}, \ldots v_{n}\right)=0$ if there exist $i<j$ with $v_{i}=v_{j}$.
