Systems with constant coefficients

November 14, 2007

Suppose the entries of A are constant. Then the solutions to the homogeneous equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}
$$

can often be found explicitly using eigenvectors and eigenvalues
Theorem
If $\mathbf{v}_{i} \in \mathbf{R}^{n}$ is an eigenvector of A with eigenvalue λ_{i}, then the vector-function

$$
\mathbf{x}_{i}:=e^{\lambda_{i} t} \mathbf{v}_{i}
$$

is a solution to the equation $\mathbf{x}^{\prime}=\mathbf{A x}$.

Proof

We just check:

$$
\begin{aligned}
\mathbf{x}_{i}^{\prime} & =\left(e^{\lambda_{i} t} \mathbf{v}_{i}\right)^{\prime} \\
& =\left(e^{\lambda_{i} t}\right)^{\prime} \mathbf{v}_{i} \\
& =e^{\lambda_{i} t} \lambda_{i} \mathbf{v}_{i} \\
& =e^{\lambda_{i} t} \mathbf{A} \mathbf{v}_{i} \\
& =\mathbf{A}\left(e^{\lambda_{i} t} \mathbf{v}_{i}\right) \\
& =\mathbf{A} \mathbf{x}_{i}
\end{aligned}
$$

Main conclusion

If \mathbf{A} has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, with corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then

$$
\left(e^{\lambda_{1} t} \mathbf{v}_{1}, \ldots e^{\lambda_{n} t} \mathbf{v}_{n}\right)
$$

is a basis for the space of solutions to the equation $\mathbf{x}^{\prime}=\mathbf{A x}$.

