Boundary Value Problems

November 27, 2007

Review: Initial Value Problems

Recall that the existence and uniqueness theorem for second order linear equations says the following.
Theorem 1: Let p, q and be real numbers. Let

$$
W:=\left\{y: y^{\prime \prime}+p y^{\prime}+q y=0\right\} .
$$

1. W is a linear subspace of the space of all functions, and has dimension 2.
2. For any t_{0}, the map

$$
W \rightarrow \mathbf{R}^{2}: y \mapsto\binom{y\left(t_{0}\right)}{y^{\prime}\left(t_{0}\right)}
$$

is an isomorphism.

Boundary value problems

Now choose t_{0}, t_{1} with $t_{1}>t_{0}$, and consider the boundary value mapping

$$
B: W \rightarrow \mathbf{R}^{2}: y \mapsto\binom{y\left(t_{0}\right)}{y\left(t_{1}\right)}
$$

This is again a linear transformation, but it not always an isomorphism.

Theorem 2: In the above situation, let $\theta:=\sqrt{4 q-p^{2}}$ and let $\ell:=t_{1}-t_{0}$. Then there are two possible cases:

1. B has rank two, and so is an isomorphism. This happens whenever $p^{2} \geq 4 q$ or whenever $4 q>p^{2}$ and $\ell \neq n \pi / \theta$ for some integer n. In either of these cases, given any y_{0}, y_{1}, there is a unique solution $y \in W$ with $y\left(t_{i}\right)=y_{i}$.
2. B has rank one. This happens when $4 q>p^{2}$ and ℓ is an integer n times π / θ. In this case, the set of $\left(y_{0}, y_{1}\right)$ in \mathbf{R}^{2} for which a solution exists is a one-dimensional linear subspace of \mathbf{R}^{2}, and the set of all y such that $y\left(t_{0}\right)=0=y\left(t_{1}\right)$ is a one-dimensional linear subspace of W, with basis $\sin (\theta t)=\sin \left(\frac{n \pi}{\ell} t\right)$.
