Differentials and Smoothness

February 17, 2017

We present a supplement, and in some cases alternative, to Hartshorne’s
Chapter I1,§8 and Chapter I1,810. These notes are not meant to be self-
contained, and will required reading Hartshorne for some definitions, some
statements, and many important examples. We often do not include detailed
proofs.

1 Derivations and deformations

Definition 1 Let n be a natural number. An “nth order thickening” is a
closed immersion i: S — T which is defined by an ideal T such that I"' =
0. A “nilpotent thickening” is a closed immersion which is an nth order
thickening for some n > 0.

If Y is a scheme, a thickening in the category of Y-schemes means a
thickening i: S — T of Y-schemes. Sometimes to emphasize this we may
want to write i: S/Y — T/Y.

The underlying map of topological spaces of a nilpotent thickening is a
homeomorphism, and we will sometimes identify the underlying spaces of S
and T'. First order thickening are especially convenient to work with. If 7 is
the ideal of a first order thickening i: S — T, then Z? = 0, and this means
that if a is a local section of O7 and x of Z, then the product axz depends only
on the image of a in Og. Thus Z has a natural structure of an Og-module:
the natural map Z — 4,i*(Z) is an isomorphism. We will sometimes ourselves
to identify Z with i*(Z).

Example 2 If M is a quasi-coherent sheaf of Og-modules, there is a scheme
D(M) whose underlying topological space is S and whose structure sheaf
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1s Og & M, with the obvious Og-module structure and with multiplication
defined by (a,z)(b,y) := (ab, ay+bx). Then the map (a,x) — a defines a first
order thickening i: S — D(M) whose ideal sheaf T identifies with M. The
map Og — Og & M sending a to (a,0), defines a morphism p: D(M) — S
such that p o1 =id.

Definition 3 Let F be a presheaf on the category of Y -schemes, leti: S — T
be a nilpotent thickening, and let & be an element of F(S). Then a “defor-
mation of £ to T is an element ¢ of F(T) such that F(i)(¢) = &, and we
write Def¢(T') to denote the set of all such elements.

If 7" — T is any morphism and S’ := S x¢ T’, then S — T" is an nth
order thickening, and a deformation of £ to T pulls back to a deformation of
the pullback & to S’ to T'. Thus Def; becomes a presheaf on the category of
T-schemes. If I is a sheaf, then Def, defines a sheaf on the Zariski topology
of T', equivalently on the Zariski topology of S.

If a thickening S — T admits a retraction p:T" — S (as in Example 2),
then F(p)(&) is automatically a deformation of &.

Definition 4 Let f: X — Y be a morphism of schemes and let € be a sheaf of
Ox-modules. Then Derxy () is the sheaf of f~(Oy)-linear maps D: Ox —
& such that D(ab) = D(a)b+ aD(b) for any two local sections a,b of Ox.

Note that Derx/y is an Ox-submodule of Hom(Ox, £).
The following notion is extremely pervasive in mathematics.

Definition 5 Let X be a topological space, let G be a sheaf of groups on X.
A (left) G-pseudo torsor is a sheaf of (left) G-sets: G x S — S such that the
corresponding map

GxS—>8%xS:(g,8) — (gs,9)

is an isomorphism. A torsor is a pseudo-torsor each of whose stalks is
nonempty.

There is an obvious notion of a morphism of G-torsors, and thus an obvi-
ous notion of the category of G-torsors on X and of the set of isomorphism
classes of G-torsors. If S is a G-torsor and U is an open subset of X and if
S(U) is not empty, then S(U) is isomorphic to G(U): given an s € S(U), the
map G(U) — S(U) : g — gs is an isomorphism of left G(U)-sets.
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Theorem 6 Let f: X — Y be a morphism of schemes and let X/Y be the
functor hx from the category of Y -schemes to the category of sets. Leti: S —
T be a first-order thickening, defined by an ideal Z, and let g: S — X be an
element of X/Y (S). Then the sheaf g.(Def,) has a natural structure (see the
formula below) of a pseudo-torsor under the sheaf of groups

Dery,y(Ox, g.T) = Hom(Q}(/Y, g:T).

Proof: A deformation h of g is a morphism h: T — X such that hoi = g.
Since ¢ is a homeomorphism and g is given, to give h is the same as to give
a homomorphism hf: Ox — ¢.Orp. Let D:Ox — ¢,Z be a derivation, and
define hf: Oy — ¢,Op to be D + hf. This map is Oy-linear, and we claim
that in fact it is a homomorphism. If a,b € Oy,

(D + h¥)(ab) = D(ab) + h*(ab) = aDb + bDa + h*(a)h*(b),
while
(D + h*((a)(D + h*(b)) = D(a)D(b) 4+ h*(b)D(a)h*(a)D(b) + h*(a)h*(b).

Since Z? = 0, D(a)D(b) = 0, and h*(b)D(a) = ¢*(b)D(a) = bD(a); and
similarly h*(a)D(b) = ¢*(a)D(b) = aD(b). and D really is a derivation.

On the other hand, if h; and hy are deformations of g, then the Oy-linear
map h% — h% factors through Z, and it is easy to check that this difference is
a derivation Ox — ¢.Z. O

For example if M is a quasi-coherent sheaf of Ox-modules, we have a
standard deformation p € Defiq(D(M), and if D € Dery,y (M), then D + p
is the deformation given by a — (a, Da) € Ox & M.

Corollary 7 Let f: X —Y be a morphism of schemes, and let Lx,y be the
ideal of the (locally closed) diagonal embedding: A: X — X xy X. Then the
map

d:Ox = Ixyy /I3y ca p(a) — pi(a)

18 a universal derivation.

Proof: Let T be the locally closed subscheme of X xy X defined by 7% Iy
Then X — T is a first order thickening, and p, and p; are two deformations
of idX. It follows that their difference d is a derivation. Suppose D: Ox —
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M is any derivation of X/Y; we claim that D factors through a unique
Ox-linear map IX/Y/I)Q(/Y — M. We already know that the target of the
universal derivation is quasi-coherent, so we may assume that M is also
quasi-coherent. Then the homomorphism Oy — Ox ® M : a — (a, Da)
defines a morphism of schemes £: D(M) — X, and the pair (p, &) defines a
morphism D(M) — X Xy X. These morphisms agree on X C D(M) and
hence sends Zx,y to the ideal Z = (0, M) of X in D(M). Since Z? = 0,
this morphism indeces a map h:IX/yI)Z(/Y — Z. Moreover, if a € Oy,
h(ps(a) — pi(a) = €(a) — p(a) = D(a).

To check the uniqueness of h, let us observe that p,Zx/y /T% Jy 1S gen-
erated as a sheaf of Ox-modules the image of d. Working locally, we may
assume that X/Y is given by a homomorphism R — A. Then Zx,y is the
sheaf associated with the ideal K := Ker(A®r A — A. Say > a; ®b; € K.
Then > a;b; = 0, so

Zai®bi:Zai®bi—2aibi®1ZZai(1®bi—bi®1).
]

The exact sequences in the following result help with the calculation of
sheaves of differentials. The proof is an easy consequence of the univeral
mapping property of differentials.

Theorem 8 Let f: X — Y and g:Y — Z be morphims of schemes and let
h:=gof.
1. The natural maps fit into an eract sequence:
Q*QY/Z — QX/Z — Qx/y — 0

2. if f is a closed immersion defined by an ideal sheaf T, Qx/y =0, and
there is an exact sequence:

I/I2 i’ f*Qy/Z — Qx/z — 0

where 0 fits into a commutative diagram:

d
T

Qy/z

)T —— [*Qyyz



3. If b:Y' — Y is a morphism and X' := Y’ xy X, the natural map
pr*Qyx y — Qi )y s an isomorphism.

Example 9 In the situation of part (2) of Theorem 8, suppose that X = Z
and that h = idy. Then the sequence (2) induces an isomorphism

I/IQ — f*Qy/Z.

Indeed, it is clear that {2x,x = 0, and it remains only to prove that the

map
0: I/I2 — i*QX/y

is injective. We will construct an inverse of this map as follows. Let Y; be
the closed subscheme of Y defined by 72, and let h:Y; — Y and f1: X — Y;
be the natural inclusions, and let ¢z = go h:Y — X. Note that f; is a
first-order thickening in the category of X-schemes, since g; o f; = idx. Let
h= fogoh:'Y; — Y, and note that Bof = f That is, h and h are two
deformations of f to Y7, and hence h* — ht is a derivation Oy — I/I% 1If
a € T, then

D(a) = h¥(a) — h¥(a) = h*(a) — h*)g*(f*(a)) = h¥(a)

Thus D defines a homomorphism Q%// + sending da to the class of a in Z/Z?
and provides a splitting of the map 9.

For example, suppose that Y is a scheme of finite type over a field £ and
the inclusion f: X — Y is corresponds to a k-rational point x of Y. Then we
get an isomorphism:

my/m2 = Qy ().
Thus in this case the Zariski tangent space of Y at z, the k-dual of m,/m2,
Equivalently the set of deformations of the inclusion x — Y to the dual
numbers Dy (€), becomes identified with the set of maps Qy/, — i.k(x), that
is, with the fiber of V(Qy ;) over x. In general, VQy, is called the tangent
space (or bundle) of Y/Z.

Corollary 10 Let X/k be a scheme locally of finite type, where k is alge-
braically closed. Then the dimension of m,/m?2 is an uppersemicontinuous
function on the set of closed points of X.

Proof: This is because {1x/ is a quasi-coherent sheaf of finite type on X
(hence coherent, since X is noetherian), and it follows from Nakayama’s
lemma that the dimension of Qy/i(x) is upper semicontinous. In fact: [
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Lemma 11 Let X be a scheme and let E be a quasi-coherent sheaf of Ox-
modules which is locally finitely generated. Then the dimension of E(x) is
uppersemicontinuous on X . If E is locally free, it is in fact locally constant,
and the converse holds if X is reduced.

Proof: Let x be a point of X, and let (e1(z), ...eq(x)) be a basis for E(z) :=
E,/mxE;. There exist an open affine neighborhood U of z and sections
(é1,...,eq) of E(U), such that the image of e; in E(x) is e;(x). Replace
X by U and let (Ox)"™ — E be the corresponding map. It follows from
Nakayama’s lemma that the induced map on (Ox,)" — E, is surjective,
and hence that is is surjective in some neighborhood of z (again using the
fact that E is finitely generated). Then dimFE(z') < dimFE(x) for all 2’ in this
neighborhood. Suppose the dimension is in fact constant. We may assume
it is constant and that X is affine, say X = Spec A, and E corresponds to
a finitely generated A-module M. We have constructed a surjective map
A"™ — M, where n is the dimension of M ® k(x) for every x € Spec A. Tt
follows that the map k(z)" — M ® k(z) is bijective for every z. Let K C A"
be the kernel of A™ — M, and observe that any coordinate of any element of
the kernel maps to zero in A,/PAp for every prime P. Since A is reduced,
the intersection of all the primes is zero, so K = 0. O]

Example 12 The map I/I* — i*Qx/y might not be injective, even if [ is
the maximal ideal corresponding to a closed point of a scheme X of finite
type over Y = Spec k. For example, let k£ be a field of characteristic p which
is not perfect, with an element a which is not a pth power, let X := Spec k[ X]|
and let I be the ideal generated by f := XP? — a. Since this polynomial is
irreducible, I is maximal and corresponds to a closed point x. But df = 0,
so the map in this case is zero.

2 Smooth, unramified, and étale morphisms

The following definition makes sense for any morphism of sheaves X — Y,
but we state it only for schemes.

Definition 13 A morphism f: X — Y is

1. formally smooth if for every affine nth order thickening S — T over
Y'm every g € X/Y(S), can be deformed to T';
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2. formally unramified if for every S — 1" every g as above, has at most
one deformation to T'.

3. formally étale if it is both formally smooth and formally unramified.

A morphism is smooth if it is formally smoth and locally of finite presenta-
tion, is unramified if it is formally unramified and locally of finite type, and
1s €tale if it 1s smooth and unramified.

If f is formally étale, then the uniqueness of the deformations implies
that the liftings on open covers agree on the overlaps and hence patch to a
unique global lifting. Since every nth order thickening is a succession of first
order thickenings, it suffice in the above definition just to consider first order
thickenings. In this case, let Z be the ideal sheaf of S in T". Then Def, forms
a pseudo-torsor under Dery,y(g.Z), and to say that f is formally smooth
is to say that this pseudo-torsor is always in fact a torsor. To say that f is
formally unramified is to say that the pseudo-torsor has at most one element.

Corollary 14 A morphism f: X — 'Y s formally unramified if and only if
QL =0.
/Y

Proof: If Q% sy = 0, it follows from Theorem 6 that first order deformations
are unique if they exist. Suppose conversely that f is unramified, let £ be
any quasi-coherent sheaf of X and let X — Dx (&) be the trivial extension
of X by €. Then the set of deformations of idx to Dx(€) is not empty and
is a torsor under Hom(Q y,£). It follows that this group is zero. Taking
&= Qﬁf/y, we see that the latter must vanish. O

Theorem 15 Let f: X — Y be a morphism of finite type. Then f is un-
ramified if and only if its geometric fibers are finite, reduced, and discrete.

Proof: Since f is of finite type, the sheaf Qﬁ(/y is also of finite type. It
vanishes if and only if for each x € X, the stalk Q% y atx vanishes, and by
Nakayama’s lemma, this is true if and only if the fiber QF sy () vanishes, Let
y = f(x), which we identify with Speck(y) — Y, and let X, := X Xy y.
Then if p: X;, — Y is the natural map, p*Q}c/Y = ky/y. The point x of X
defines a point 2’ of X, with p(2’) = x, and the above isomorphism identifies
QY (2') with Q%/y-(z). Thus we see that f is unramified if and only if every
X, — y is unramfied. Since § — y is faithfully flat, Qky sy =0 if and only if
Q}Xy /7 18 unramified. 0



Proposition 16 If f: X — Y is smooth, then the sheaf Qﬁ(/y 15 locally free.

Theorem 17 Let f: X — Y and g:Y — Z be morphisms of schemes, each
locally of finite presentation, and let h := go f.

1. Suppose that f: X — Y 1is a closed immersion defined by a sheaf of
ideals T. If X — Z is smooth, the map

a: I/IQ — f*Q;'/Z

of Theorem 8 is injective and locally split. The converse is true provided
that Y — Z is smooth.

2. If f is smooth, the map
/ *Q%//Z — Qﬁ(/z

of Theorem 8. 1is injective and locally split. The converse is true pro-
vided that h is smooth.

Proof: Suppose that h: X — Z is smooth. Let j:Y; — Y be the closed
subscheme of Y defined by Z?. Then i: X — Y is a first-order thickening.
Assuming without loss of generality that X is affine, the smoothness of X/Z
implies that there is a retraction r:Y; — X, compatible with the given maps
to Z. Let j := for:Y; — Y, and note that joi = foroi= f = joi.
Thus j* — j* “is” a derivation D : Oy — T /Z?. This derivation defines a map
Q/; — T/I* which gives the desired splitting.

For the converse, suppose that g is smooth, working locally, that

s: f*Q%//Z — I/T?

splits d. Let i: S — T be an affine first order thickening over Z, defined by
a square zero ideal J, and let S — X be a morphism (over Z). Since
Y/Z is smooth, there exists a deformation s of fo f to T. Then s*: Oy —
5.Or necessarily maps Z to r,J, and since J? = 0, factors through a map
0:7/7* — s,J. Then 6o s: f*Q%,/Z — J, composed with the natural map
Oz = fuf*Qy), defines a derivation D: Oy — 5,J. Then §:= s — D is a
map 7 — Y, and in fact 5 kills Z and hence § factors through X.

We omit the proof of (2), which is quite similar. ]



Remark 18 In the situation of part (1) of the previous theorem, let = be
a point of X, and suppose that ¥ — Z is smooth. The morphism X — Z
is smooth in some neighborhood of z if and only if the map of k(x)-vector

spaces:
d(x): I(x) — Q%,/Z(x)

is injective. Smoothness implies that d is injective and locally split, and
it follows immediately that d is injective. Conversely, if d(z) is injective,
choose a lift fi,..., f, to Z, of a basis for Z(z). By Nakayama’s lemma,
these elements generate Z,. (Recall that X is of finite presentation.) Then
(dfi(x), ..., df.(r)) remains linearly independing in €}/, (z), and hence can
be completeted to a basis(dfi(z), ..., dfr(v), w1 (), ws(r)), with w; € Q55 ).
Since Q%//Z@ is free, it follows that dfy, . .. df,., w1, ws) is a basis, and the desired
splitting is easy to construct.

Corollary 19 Let X/k be a scheme of finite type over a field k and let x be
a k-rational point of X. Then X/k is smooth in some neighborhood of x if
and only if X s reqular at x.

Proof: The question is local, so we may assume that X can be embededd in
Y := A" If m; Oy, is the maximal ideal of the local ring Oy, the map d(x)
above identifies with the map Z,/m,Z, — m,/m?2. Thus the map is injective
if and only if Z, N m2 C m,Z,. Since Y is regular at x, this condition is
equivalent to the regularity of X at x.

Let us recall the proof.

Since the closed points of X are dense and since localizations of regular
local rings are regular, X is a regular scheme if and only if the local rings at
the closed points of X are regular. Working locally, we may assume that X
can be embedded as a closed subscheme of an affine space Y/k. Let = be a
closed point of X. Corollary 18 tells us that X is smooth if and only if the
map Z(z) — m,/m? is injective. This is equivalent to the regularity of X
at x. Let us recall the proof. Let m, be the maximal ideal of Oy, and let
M, = m,/Z, be the maximal ideal of Ox_,. We have exact sequences:

0— Z,Nm2/Tym, — IT(x) = T, /T, N m2 — 0
0 — Z,/T, Nm2 — my/m> — M, /M- — 0

where m, is the maximal ideal of Oy, and m, is the maximal ideal of Ox .
For simplicity of notation, rewrite these sequences as:

0— K(x) = Z(x) — Z(2).
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0 — Z(x) = my/m2 — m,/m- — 0.

Since Y is regular, dim,(Y) = dimm,/m?, and since Z, can be generated by

dimZ(z) elements,
dim, (X) dim, (Y) — dimZ(x)

dim(m,/m?) — dim(K (x)) — dim(Z(z))

dim(m, /m2) — dim(K(z))

VIV IV

If K(z) = 0 we conclude that dim,(X) > dim(m,/m?2), and it follows that in
fact equality holds and X is regular at x. For the converse, suppose that X is
regular and choose a a sequence of elements f1, ..., f. of Z, lifting a basis for
Z(x). Then fi(x)--- f.(z) € Z(x) are linearly independent in m,/m?2, and
hence can be completed to a basis for this vector space. Lifting the remaining
elements to elements of m,, we end up with a sequence (fi,..., f,) of ele-
ments of m, such that (f1,..., f.) lie in Z, and such that (fi(z),..., fo(z) is
a basis for the maximal m, of  in Oy,. Let J be the ideal Oy, generated by
(f1,-.., fr). Then it follows from the argument above that X’ := Spec Oy,,,/J
is regular of dimension dim, Y —dim(Z,) = dimm, /ovm?2. If X is regular at
x, then this is also the dimension of X. But X C X’ and since X' is regular,
it is irreducible, and it follows that X and X’ coincide at . Then J = 7,
and it follows that K (z) = 0. O

Theorem 20 Let f: X — Z be a morphism locally of finite presentation.
Assume that X and'Y are locally noetherian. Then f is smooth if and only
if it is flat and its geometric fibers are reqular.

Proof: Assume that f is smooth. Let x be a point of X, let z := f(x),
and let Z be the spectrum of algebraically closed field endowed with a map
to z. Then X3z is smooth, and hence by Corollary 19 it is regular. Our task
is to prove that f is flat. We use the following techinique from commutative
algebra.

Lemma 21 Let R — B be a local homomorphism of noetherian local rings.
1. B is flat over R if and only if Tor(B, kg) = 0.

2. Suppose that B is flat over R and that A is the quotient of B by the
ideal I generated by an element b of mp. If the image b of b in B/mzB
is a nonzero divisor, then A is also flat over R.
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Proof:  Statement (1) is the famous “local criterion of flatness,” and we use
it to prove (2). Since B is R flat, Torf¥(B,kgr) = 0, so the top row of the
diagram below is exact:

0 Torf(A kg) — I ®g kg g Qg kg

™ D

B@R kR

By assumption -b is injective, and it follows that 7 is also injective. The map 7
is obtained from the surjective map B — I and hence is also surjective, hence
bijective. Then it follows that 3 is injective and then that Torf(A, kg) =
0. O

We return to the proof of the theorem. Since Xz — X, is flat, it follows
that X, is regular, and in particular is an integral domain. Working locally,
we may assume that there exists a closed immersion : X — Y, where Y
is both flat and smooth over Z—for example affine n-space over Z. Let
R :=0y,,B = Oy,, and A := Ox,. Let I be the kernel of the surjection
B — I. By Theorem 17, the map d: I(x) — Q} () is injective. Choose a
sequence of generators (by, ..., b,) for I such that (fi(x),..., f-(z)) is a basis
for I(x) Theorem 17 implies that for every i, the subscheme X! of Y defined
by (b1, ...,b;) is again smooth over Z. We prove that it is flat by induction
on 7. This is true by assumption if © = 0, and the general induction step will
follow from the case i = 1. Since Y/R is smooth, its fibers are regular, and
hence B ®p k is an integral domain. Since the image b of b; in B ®p k is not
zero, b is a nonzero divisor, and since B is flat, the lemma implies that A is
also flat. This completes the proof.

For the converse, suppose that X — Z is flat and that its geometric
fibers are regular. We claim that X — Z is smooth. Again we work locally
in a neighborhood of a point x, so we can assume that there is a closed
immersion i: X — Y where Y is smooth over Z (e.g. affine space). Suppose
Y = Spec(B) and X = Spec(A), with A = B/I. If z is a geometric point
lying over the image z € Z of X, then by Corollary 19 we know that X x,z
is smooth over Z. Let B := B®@pk and A := A®p k and let I be the kernel
of the map B ®r k — A®pr k. Since A/R is flat, in fact I = I ®p kr. Then

I(z) :=TI/otgk(x) = I ®p kr @5 k(z) = I @5 k(z),
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and d: I(x) — Q}g/R(x) identifies with the map I(z) — ng/kR(x). tensoring
over kg with k(z), we get the corresponding map for the geometric fibers

Xz — Yz, which is injective. O
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