Homework Assignment #3:

Due February 22

1. Let R be a ring and let E be an R-module. Recall that the functor $\mathbf{V}E$ taking an R-algebra A to the set $\text{Hom}_R(E, A)$ is representable by the R-algebra $S'E$ together with the universal element $v: E \to S'E$ (the inclusion of E into the degree one component of $S'E$). This functor has its values in the category of sets, but in fact it factors naturally through the category of abelian groups. Identifying the scheme $\text{Spec} S'E$ with the functor $\mathbf{V}E$, and using Yoneda, we find a natural group scheme structure $\mathbf{V}E \times_R \mathbf{V}E \to \mathbf{V}E$. Recall that there is a unique derivation $d: S'E \to S'E \otimes E$ such that $d \circ v(e) = 1 \otimes e$ for all $e \in E$ and that this derivation is universal, so that $\Omega^1_{S'E/R} = S'E \otimes E$. If I is a square zero ideal in A, how that the action of $\mathbf{V}E(A)$ on itself defined by the group structure is compatible with the the action of $\text{Der}_{S'(E)/R}(I)$. (The only difficulty here is figuring out how to say this, and perhaps the signs.)

2. Let R be a ring and let E be an R-module. Recall that $\mathbf{P}E$ is the functor taking to the set of hyperplanes in $A \otimes_R E$, equivalently, the set of isomorphism classes of invertible quotients $\ell: A \otimes_R E \to L$ of $A \otimes_R E$. Recall also that $\mathbf{P}E$ is covered by affine open subfunctors $D^+(e)$, where $D^+(e)$ is the set of isomorphism classes of invertible quotients ℓ such that $\ell(1 \otimes e)$ generates L; equivalently, the set of R-linear maps $v: E \to A$ such that $v(e) = 1$. Let E' be the quotient of E by the submodule of E generated by e. We have a closed immersion $\mathbf{P}E' \to \mathbf{P}E$. Show that $D^+(e)$ is the complement of this closed immersion. Show that the group valued functor $\mathbf{V}E'$ acts on the functor $D^+(e)$ and that this action makes $D^+(e)$ is a pseudo-torsor. (This generalizes the fact that $\mathbf{P}^n \setminus \mathbf{P}^{n-1} \cong \mathbb{A}^{n-1}$.)
3. Taking account the degrees, the universal derivation in Problem 1 defines a map
\[d: S^*E \rightarrow S^*E(-1) \otimes E \]
and multiplication defines a map \(S^*E(-1) \otimes E \rightarrow S^*E \). Show that the composition of these two maps is just multiplication by \(m \) in degree \(m \). Show that the maps and formula remain valid after localization by any homogeneous element \(g \) of \(S^*E \). Deduce that on \(\mathbb{P}E \), there are maps
\[d_n: \mathcal{O}_{\mathbb{P}E}(n) \rightarrow \mathcal{O}_{\mathbb{P}E}(n-1) \otimes E \]
and that the map \(d_0 \) factors through a map \(d: \mathcal{O}_{\mathbb{P}E} \rightarrow \mathcal{H}(-1) \), where \(\mathcal{H} \subseteq \mathcal{O}_{\mathbb{P}E} \otimes E \) is the universal hyperplane.

4. Show that the map \(d: \mathcal{O}_{\mathbb{P}E} \rightarrow \mathcal{H}(-1) \) constructed above is the universal derivation and defines a canonical isomorphism: \(\Omega^1_{\mathbb{P}E/R} \rightarrow \mathcal{H}(-1) \).

5. Let \(k \) be a field of characteristic not equal to 3, let \(R := k[t] \), and let \(f := X^3 + Y^3 + Z^3 - 3tXYZ \in R[X, Y, Z] \). The ideal of \(R[X, Y, Z] \) generated by \(f \) definex a closed subscheme \(X \) of \(\mathbb{P}^3_R \). At which points of \(X \) does the morphism \(X \rightarrow \text{Spec } R \) fail to be smooth? Answer the analogous question for \(g := t(X^3 + Y^3 + Z^3) - 3XYZ \in R[X, Y, Z] \).