1. Let p be an odd prime, and let $p^* := (-1)^{\frac{p-1}{2}}$. Recall that $K := \mathbb{Q} (\sqrt{p^*})$ is the unique subfield of $\mathbb{Q} (\zeta_p)$ which has degree 2 over \mathbb{Q}. It follows that K is unramified over \mathbb{Q} away from p. Recall that if q is an odd prime, we computed $\left(\frac{q}{p} \right)$ by looking at the Frobenius element of $\text{Gal}(K/\mathbb{Q})$ at q. Use the same method to show that

$$\left(\frac{2}{p} \right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Hint: Compute the integral closure of \mathbb{Z} in K at 2.

2. Nuekirch, §11, number 1.

3. Nuekirch, §11, number 2

4. Nuekirch, §11, number 3