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Let us begin with the local statement.

Theorem 1 Let K/Qp be an abelian extension. Then K is contained in a
cyclotomic extension of Qp.

Proof: We give the proof only for odd primes.

Lemma 2 Suppose K/Qp is totally ramified of degree p, with p odd. Then
G2 = {1}, and νK(DK/Qp) = 2(p− 1).

Proof: Suppose i is the smallest integer such that Gi = {1}. Then νK(DK/Qp) =
(p− 1)i, and since

νK(DK/Qp) ≤ e− 1 + νK(e) = e− 1 + νK(p) = 2e− 1,

we conclude that

(p− 1)i ≤ 2p− 1 = 2p− 2 + 1

i ≤ 2 +
1

p− 1

Since p is odd and i is at least 2, we conclude that i = 2 and νK(DK/Qp) =
2(p− 1).

Lemma 3 Suppose K/Qp is totally ramified of degree p2, with p odd. Then
G1/G2 and Gp+1/Gp+2 are cyclic of order p, and νK(DK/Qp) = 3p2 − p− 2 .
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Proof: Recall that for any i > 0 we have an injective homomorphism

θi: Gi/Gi+1 → mi/mi+1,

where i is the maximal ideal of the ring of integeres of K. Since the residue
field is the prime field, we see that each quotient is cyclic. Suppose that j
is the smallest integer such that Gj = {1} and that i is the smallest integer
such that G 6= Gi. Recall that i and j are congruent modulo p, so that we
can write j = i + pk, where i is at least 2 and k is at least 1. The formula
for the value of the different now gives:

νE(DK/Qp) = (p2 − p)i + (p− 1)(i + pk)

= p2(k + i)− pk − i.

On the other hand, the upper bound for the different is e − 1 + νKE(p2) =
3p2 − 1, so we get

p2(k + i)− pk − i ≤ 3p2 − 1
(p2 − p)(k + i) + pi− i ≤ 3p2 − 3p + 3p− 3 + 2

(p2 − p)(k + i) ≤ 3p2 − 3p + (p− 1)(3− i) + 2
≤ 3p2 − 3p + (p− 1) + 2

(k + i) ≤ 3 +
1

p
+

2

p2 − p

Since p is at least three, we see that k + i is bounded by 3 2
3
, and so must be

3. Thus, i = 2, k = 1, and νE(DK/Qp) = 3p2 − p− 2.

Lemma 4 Any totally ramified Galois extension K of degree p2 over Qp is
cyclic (p is odd).

Proof: It suffices to show that the Galois group of K/Qp has a unique
subroup of order p. Let H be such a subgroup and let K ′ be its fixed field;
then νK(DK/Qp) = pνK′(DK′/Qp) = 2p2 − 2p. By the multiplicativity of the
different in extensions and the previous lemma, we deduce that

νK(DK/K′) = νK(DK/Qp − νK(DK′/Qp)

= (3p2 − p− 2)− (2p2 − 2p)

= p2 + p− 2

= (p− 1)(p + 2).
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On th other hand, if j is the smallest integer such that Hj = {1}, the
equation νK(DK/K′) = (p − 1)j shows that j = p + 2. We conclude that H
is contained in the subgroup Gp+1, and hence coincides with it.

Having proved some limits on the type of extensions which can occur, our
next task if to construct some interesting cyclotomic extensions.

Lemma 5 For any positive integer a, there is an integer m such that Eu
a :=

Qp(ζm) is unramified and cyclic of degree pa.

Proof: We know that the finite field Fp admits an extension of degree pa,
and that this extension is automatically separable, cyclic, and cyclotomic,
obtained by adjoining an mth root of unity for some m relatively prime to
p. Then Qp(ζm) is unramified and has the same properties.

Lemma 6 For any positive integer a, there is a (unique) subfield Ew
a of

Qp(ζpa+1) which is totally ramified, cyclic, and of degree pa over Qp.

Proof: We know that Q(ζpa+1) is totally ramified over Qp, and Galois with
group (Z/pa+1Z)∗. Furthermore, the canonical exact sequence of abelian
groups

1 → U → (Z/pa+1Z)∗ → F∗
p → 1

splits uniquely, since the order p−1 of the quotient is relatively prime to the
order pa of the kernel. Then the fixed field Ew

a of the image of the splitting
F∗

p ⊆ G(Q(ζpa+1)) is totally ramified and Galois, with group H. Since p is
odd, the group H is cyclic.

Lemma 7 The compositum Ea := Ew
a Eu

a is Galois over Qp, with group
Z/paZ× Z/paZ.

Proof: Observe that Ew
a ∩ Eu

a is totally ramified and unramified over Qp,
hence trivial. It follows that the Galois group of the compositum is the
product of the two Galois groups.

Now we can prove Theorem 1 for cyclic p-extensions.
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Lemma 8 Let K be a Galois extension of Qp which is cyclic of order pa.
Then K is contained in the field Ea.

Proof: Let E := Ea. We have a diagram of abelian extensions:

KE

K

-

E

�

K ∩ E

-
�

Qp

6

Thus

Gal(KE/Qp) ∼= Gal(K/Qp)×Gal(K∩E/Qp) Gal(E/Qp).

The K ∩ E/Qp is cyclic of degree pb, with b ≤ a, and the natural surjec-
tion Gal(K/Qp) → Gal(K ∩ E/Qp) can be identified with the projection
Z/paZ→ Z/pbZ. Let

M := Gal(K/Qp)×Gal(E/Qp) ∼= (Z/paZ)3.

Then we have an exact sequence:

0 → Gal(KE/Qp) → M → Z/pbZ→ 0

where the map on the right is given by the difference of the two maps
Gal(K/Qp) → Gal(K ∩ E/Qp), Gal(E/Qp) → Gal(K ∩ E/Qp). Let M :=
M⊗Z/pbZ. Then the map π: M → Z/pbZ factors through a surjection of free
Z/pbZ-modules: π: M → Z/pbZ. This surjection admits a splitting, so that
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M admits a basis e1, e2, e3 such that π(e1) = π(e2) = 0 and π(e3) = 1. Then
if ei ∈ M lifts ei, (e1, e2, e3) is a basis for M and π(e1) = π(e2) = 0, π(ee) = 1.
This implies that the kernel of π is isomorphic to Z/paZ×Z/paZ×Z/pa−bZ.
If K is not contained in E, then a < b and the Galois group G(EK/Qp)
admits a quotient isomorphic to G′ := (Z/pZ)3. This tells us that Qp ad-
mits a field extension K ′ which is Galois with this G′ as Galois group. The
maximal unramifed extension K ′

u of K is cyclic over Qp, and corresponds to
a quotient G′

u of G′, and hence is either trivial or of order p. In any case it
is a direct factor of G′ (not uniquely). The fixed field K ′′ of a splitting of
G′

u → G′ is totally ramified over Qp and Galois with group (Z/pZ)c, with
c = 2 or 3. This would contradict the previous lemma.

Let us next discuss the tame case. Here we do not need to assume that
p is odd.

Lemma 9 Let K/Qp be a tamely ramified and abelian extension. Then its
ramification degree e divides p− 1, and K is contained in Ku(ζp), where Ku

is the unramified part of K.

Proof: We have an exact sequence

1 → G0 → G → G/G0 → 1

where G/G0 is (identified with) the Galois group of the residual extension
of K/Qp. We also have the tame character τ : G0 → k∗B. Recall that if
h ∈ G0 and g ∈ G, τ(ghg−1) = g(τ(h)). Since G is abelian, it follows
that τ(h) = g(τ(h)). Since G maps surjectively to the Galois group of the
residual extension, it follows that τ(h) ∈ F∗

p. Since the ramification is tame,
τ is injective, and the order e of G0 divides the order of F∗

p, viz. p− 1.
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Now consider the following diagram of field extensions.

K(ζp)

K

-

Ku(ζp)

�

Ku

-
�

Q(ζp)

�

Qp

-
�

In this diagram, Ku/Qp is unramified and Q(ζp)/Qp is totally ramified, so
Ku ∩ Q(ζp) = Qp and Ku(ζp)/K

u is Galois with group F∗
p. The extension

K(ζp)/K
u is totally and tamely ramified, and hence its Galois group is cyclic,

say of order n. Since it is cyclic, it has a unique subgroup of index d for each
divisor d of n. Hence for each such d there is a unique extension Kd of Ku

contained in K(ζp); in particular Ku = Ke. Similarly, Ku(ζp)/K
u is cyclic

of degree p− 1, so for each divisor d of p− 1 there is a unique extension K ′
d

of Ku contained in Ku(ζp). Since e divides p− 1, K = Ke = K ′
e is contained

in Ku(ζp).

Remark 10 The last part of the argument above applies more generally.
It is worth stating the conclusion, which is sometimes called Abhyankar’s
lemma. Let K/K0 be a Galois extension of local fields which is tamely
ramified, with ramification degree e. Let E/K0 be Galois, totally and tamely
ramified, with degree divisible by e. Then K is contained in KuE. This
applies to numberfields as well.

Proof of Theorem 1 Let K/Qp be an abelian extension. The Galois group
G(K/Qp) is the product of cyclic groups of prime power order, and so K
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is the compositum of field extensions each of which is Galois and abelian of
prime power order. It suffices to prove that each of these is contained in a
cyclotomic extension. Thus we may assume that K is cyclic of order `a for
some prime `. Lemma 8 then asserts that K is contained in a cyclotomic
extension if ` = p. If not, K/Qp is tame, and hence contained in Ku(ζp).
But we have already noted that unramified extensions of Qp are contained
in cyclotomic fields. This completes the proof.

Now let us discuss the global case. A crucial ingredient is the fact that
Q has no nontrivial unramified extensions. This can be expressed group-
theoretically as follows.

Theorem 11 Let K/Q be a finite Galois extension of Q. Then the Galois
group G(K/Q) is generated by the set of elements which belong to some
inertia group at some prime of K.

Proof: Indeed, if H is the subgroup of G(K/Q) generated by all such ele-
ments, then the fixed field KH is unramified over Q, hence is equal to Q.

For example, if we write a positive integer m as a product of prime powers:
m =

∏
prp , we obtain an isomorphism of rings Z/mZ ∼=

∏
p Z/prpZ and

hence an isomorphism of groups (Z/mZ)∗ ∼=
∏

p(Z/prpZ)∗. This isomorphism
corresponds to compositum of fields Q(ζm) ∼= ⊗Q(ζprp ). In fact, under these
isomorphisms, the factor (Z/prp)∗ corresponds exactly to the inertia subgroup
Ip ⊆ G(Q(ζm)/Q) at (any prime lying over) p. Note that in this case, the
inertial subgroups are actually disjoint, and the map

∏
Ip → G(Q(ζm)/Q) is

an isomorphism.

Theorem 12 Let K/Q be an abelian extension. Then K is contained in a
cyclotomic field.

Proof: The Galois group G of K/Q is abelian and finite, hence the product
of finite cyclic groups of prime power order. Then K is the compositum of
cyclic extensions of prime power order, and it suffices to treat each of these
separately. So suppose that K/Q is cyclic of order a power of `. Let p be a
prime at which K ramifies. The local version of the theorem tells us that there
is an m such that K ⊆ Qp(ζm). This certainly implies that K(ζm)/Q(ζm)
is unramifed over the prime lying over p. Since only finitely many primes of
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K are ramified, we can find a single m so that K(ζm)/Q(ζm) is everywhere
unramified. This means that the inertia groups Ip of the extension K(ζm)/Q
have trivial intersection with the Galois group of the extension K(ζm)/Q(ζm),
and hence map injectively to the Galois group of the extension Q(ζm)/Q.
Consider the commutative diagram:∏

p

Ip(K(ζm)/Q) -
∏

Ip(Q(ζm)/Q)

G(K(ζm)/Q)
?

- G(Q(ζm)/Q)
?

As we have seen, the arrow on the top is injective, and the arrow on the
right is an isomorphism. Theorem 11 (and the fact the Galois group is
abelian) implies that the map on the left is surjective. But then it must be
an isomorphism, and so must be the map on the bottom. This implies that
K ⊆ Q(ζm).

Stritly speaking, our proof has a gap, since we did not prove the local
theorem when p = 2. The following finesse of this tricky was explained to
me by H. Lenstra.

Suppose again that K is cyclic of order a power of a prime `. If ` is odd,
K is at most tamely ramified at 2, and since the extension is abelian, the
image of the tame character lies in F∗

2 = {1}. Hence K is unramified at 2.
show that K is in fact unramified at 2. Thus the proof goes through in this

case. Now suppose that ` = 2. Suppose that K ramifies at some odd prime
p. Then K is again at most tamely ramified, and the argument in Lemma
9 shows that K ⊆ Ku(ζp), where Ku is the subfield of K unramified over p.
It suffces to prove that Ku is contained in a cyclotomic field. Repeating this
argument at all the odd primes, we are reduced to the case in which K is
unramified everywhere except possibly at 2.

Lemma 13 2cyc.l Suppose that K/Q is an abelian extension of degree a
power of 2, is real, and is unramified outside of 2. Then K/Q is cyclic.

Proof: It suffices to show that K has a unique subfield which is quadratic
over Q. But such a subfield must be Q(

√
m) for some square free m, and

because it is unramified away from 2, m = ±2 or m = −1. Since K is real,
necessarily m = 2.
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Lemma 14 Suppose that K/Q is an abelian extension of degree a power of
2, unramified outside of 2. Then K is contained in a cyclotomic extension.

Proof: Consider the field K(i). This is still unramified outside of 2 and
abelian of degree a power of 2. Let K ′ be the invariants under complex
conjugation; then K ′ is real, of degree a power of 2, and unramified outside
of 2, hence cyclic, by the previous lemma. Suppose its degree is 2m. Let
F be the real part of Q(ζ2m+2). This is also abelian of degree 2m, real,
and unramified outside of 2. Since the lemma applies also to show that the
compositum of K ′ and F is cyclic, we can conclude that K ′ ⊆ F . Hence
K ⊆ K ′(i) ⊂ F (i), which is still a cyclotomic field.
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