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Let O be a noetherian local ring with maximal ideal m and residue field
k. Let e(O) denote the dimension of the k-vector space m2. Let

Grm(O) := ⊕mimi+1,

viewed as a graded k-algebra.
Recall that Krull’s theorem implies that ∩mi = {0}. Hence if a ∈ O is

nonzero, there exists a natural number ν such that a ∈ mν \ mν+1. We write
ν(a) when there is room, and we write In(a) for the image of a in mν/mν+1.
Note that if a, b ∈ O, then ν(ab) ≥ ν(a) + ν(b). If equality holds, then
In(ab) = In(a)In(b), and this is true if and only if In(a)In(b) is not zero.
Furthermore, ν(a+ b) ≥ min{ν(a), ν(b)}.

If I is an ideal in O, then for each integer ν, the image of I∩mν → GrνmO
is the set of initial forms of degree ν of elements of I. Summing over all ν,
we get a subset In(I) of Grm(O). The exact sequence

0→ In(I)→ Grm(O)→ Grm(O/I)→ 0

shows that In(I) is in fact an ideal of Grm(O).
Note: If Grm(O) is a domain and I is principally generated by f , then

In(I) is principally generated by In(f). This is because every element of I is
of the form fg for some g ∈ O, and In(fg) = In(f)In(g). As a consequence,
we see that the following holds.

Proposition 0.1 If Grm(O) is an integral domain, then O is an integral do-
main. Furthermore, in this case ν(ab) = ν(a)+ν(b) and In(ab) = In(a)In(b)
for any pair of nonzero elements of O.
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The map m/m2 → Grm(O) extends uniquely to a homomorphism of
graded k-algebras:

σ:S·(m/m2)→ Grm(O).

Theorem 0.2 The following are equivalent.

1. There is an O-regular sequence which generates m.

2. dim(O) = e(O).

3. The map σ above is an isomorphism.

Proof: If (x1, . . . , xr) is an O-regular sequence which generates m, then
evidently depth(O) ≥ r. Since dim(O) ≥ depth(O), dim(O) ≥ r. But
r ≥ e, and hence dim(O) ≥ e. Since the reverse inequality is always true,
(2) follows.

Suppose dim(O) = e. The homomorphism σ is always surjective, so it
suffices to show that it is injective. Let K be its kernel, a homogeneous ideal
of the symmetric algebra S·. If K is not zero, there is an r > 0 with a nonzero
f ∈ K of degree r. Then since S· is isomorphic to a polynomial ring, it is an
integral domain, and multipication by f defines an injective map from Si−r

to Ki. Then the dimension of Ki is at least the dimenison of Si−r, and the
dimension of the quotient Gi is at most the dimension h(i) of Si minus the
dimension of Si−r. Recall that for i ≥ 0, the dimension of Si is pe−1(i), so
that h(i) ≤ pe−1(i) − pe−1(i − r), which is a polynomial of degree at most
e− 2. Thus `O(i) is bounded by a polynomial of degree at most e− 1, which
contradicts the equality e(O) = dim(O).

We prove that (3) implies (1) by induction on e. In fact we prove more:
every sequence of generators for m of length e is O-regular, If this is zero,
then m = 0 and so O = k and the statement is vacuous. For the induction
step, assume that e > 0 and let (x1, . . . , xe) be a lift of a basis (x1, . . . , xe) of
m/m2. Then xi = In(xi) for all i. The assumption (3) implies that Grm(O)
is an integral domain, and hence by the proposition, O is a domain also.
Moreover, the proposition also implies that if I is the ideal of O generated
by (x), then In(I) is generated by x, so that Grm(O/(x1) ∼= Gr(O)/(x1). It
follows that the map

k[x2, . . . , xe]→ Grm(O/(x1)))
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is again an isomorphsm. Then the induction hypothesis applies to tell us
that the sequence (x2, · · · , xe) is O/(x1) regular, and hence that (x1, . . . , xe)
is O-regular.

3


