Regular local rings I

April 13, 2016

Let \mathcal{O} be a noetherian local ring with maximal ideal \mathfrak{m} and residue field k. Let $e(\mathcal{O})$ denote the dimension of the k-vector space \mathfrak{m}^2 . Let

$$\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O}) := \oplus \mathfrak{m}^{i}\mathfrak{m}^{i+1},$$

viewed as a graded k-algebra.

Recall that Krull's theorem implies that $\cap \mathfrak{m}^i = \{0\}$. Hence if $a \in \mathcal{O}$ is nonzero, there exists a natural number ν such that $a \in \mathfrak{m}^{\nu} \setminus \mathfrak{m}^{\nu+1}$. We write $\nu(a)$ when there is room, and we write In(a) for the image of a in $\mathfrak{m}^{\nu}/\mathfrak{m}^{\nu+1}$. Note that if $a, b \in \mathcal{O}$, then $\nu(ab) \geq \nu(a) + \nu(b)$. If equality holds, then In(ab) = In(a)In(b), and this is true if and only if In(a)In(b) is not zero. Furthermore, $\nu(a+b) \geq \min{\{\nu(a), \nu(b)\}}$.

If I is an ideal in \mathcal{O} , then for each integer ν , the image of $I \cap \mathfrak{m}^{\nu} \to \operatorname{Gr}^{\nu}_{\mathfrak{m}} \mathcal{O}$ is the set of initial forms of degree ν of elements of I. Summing over all ν , we get a subset In(I) of $\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O})$. The exact sequence

$$0 \to In(I) \to \operatorname{Gr}_{\mathfrak{m}}(\mathcal{O}) \to \operatorname{Gr}_{\mathfrak{m}}(\mathcal{O}/I) \to 0$$

shows that In(I) is in fact an ideal of $\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O})$.

Note: If $\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O})$ is a domain and I is principally generated by f, then In(I) is principally generated by In(f). This is because every element of I is of the form fg for some $g \in \mathcal{O}$, and In(fg) = In(f)In(g). As a consequence, we see that the following holds.

Proposition 0.1 If $\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O})$ is an integral domain, then \mathcal{O} is an integral domain. Furthermore, in this case $\nu(ab) = \nu(a) + \nu(b)$ and $\operatorname{In}(ab) = \operatorname{In}(a)\operatorname{In}(b)$ for any pair of nonzero elements of \mathcal{O} .

The map $\mathfrak{m}/\mathfrak{m}^2 \to \operatorname{Gr}_{\mathfrak{m}}(\mathcal{O})$ extends uniquely to a homomorphism of graded k-algebras:

$$\sigma: S^{\cdot}(\mathfrak{m}/\mathfrak{m}^2) \to \mathrm{Gr}_{\mathfrak{m}}(\mathcal{O}).$$

Theorem 0.2 The following are equivalent.

- 1. There is an \mathcal{O} -regular sequence which generates \mathfrak{m} .
- 2. dim(\mathcal{O}) = $e(\mathcal{O})$.
- 3. The map σ above is an isomorphism.

Proof: If (x_1, \ldots, x_r) is an \mathcal{O} -regular sequence which generates \mathfrak{m} , then evidently depth $(\mathcal{O}) \geq r$. Since dim $(\mathcal{O}) \geq$ depth (\mathcal{O}) , dim $(\mathcal{O}) \geq r$. But $r \geq e$, and hence dim $(\mathcal{O}) \geq e$. Since the reverse inequality is always true, (2) follows.

Suppose dim $(\mathcal{O}) = e$. The homomorphism σ is always surjective, so it suffices to show that it is injective. Let K be its kernel, a homogeneous ideal of the symmetric algebra S^{*} . If K is not zero, there is an r > 0 with a nonzero $f \in K$ of degree r. Then since S^{*} is isomorphic to a polynomial ring, it is an integral domain, and multiplication by f defines an injective map from S^{i-r} to K_i . Then the dimension of K_i is at least the dimension of S^{i-r} , and the dimension of the quotient G_i is at most the dimension h(i) of S^i minus the dimension of S^{i-r} . Recall that for $i \geq 0$, the dimension of S^i is $p_{e-1}(i)$, so that $h(i) \leq p_{e-1}(i) - p_{e-1}(i-r)$, which is a polynomial of degree at most e - 2. Thus $\ell_{\mathcal{O}}(i)$ is bounded by a polynomial of degree at most e - 1, which contradicts the equality $e(\mathcal{O}) = \dim(\mathcal{O})$.

We prove that (3) implies (1) by induction on e. In fact we prove more: every sequence of generators for \mathfrak{m} of length e is \mathcal{O} -regular, If this is zero, then $\mathfrak{m} = 0$ and so $\mathcal{O} = k$ and the statement is vacuous. For the induction step, assume that e > 0 and let (x_1, \ldots, x_e) be a lift of a basis $(\overline{x}_1, \ldots, \overline{x}_e)$ of $\mathfrak{m}/\mathfrak{m}^2$. Then $\overline{x}_i = In(x_i)$ for all i. The assumption (3) implies that $\operatorname{Gr}_m(\mathcal{O})$ is an integral domain, and hence by the proposition, \mathcal{O} is a domain also. Moreover, the proposition also implies that if I is the ideal of \mathcal{O} generated by (x), then In(I) is generated by \overline{x} , so that $\operatorname{Gr}_{\mathfrak{m}}(\mathcal{O}/(x_1) \cong \operatorname{Gr}(\mathcal{O})/(\overline{x}_1)$. It follows that the map

$$k[x_2,\ldots,x_e] \to \operatorname{Gr}_{\mathfrak{m}}(\mathcal{O}/(x_1)))$$

is again an isomorphism. Then the induction hypothesis applies to tell us that the sequence (x_2, \dots, x_e) is $\mathcal{O}/(x_1)$ regular, and hence that (x_1, \dots, x_e) is \mathcal{O} -regular.