Koszul complexes

April 28, 2016

Let R be a commutative ring, let £ be an R-module, and let ¢ be a
natural number. A ¢-linear map from E to an R-module F' is a function
f: 1 — F which is linear in each variable separately:

fler,...;ae;+d'el, ... e)) =af(er,...,ei...eq) +d fler,...,€,...,eq).

There is a universal g-linear map
E1 S TIE: (e1,...,60) = e Q- e,

If E is free with basis (eq,...e,), then TYF is also free, with basis the set of
elements of the form e; = e, ® e, ® -+ ® ey, where 1 < I; < n for each n.
Thus 7" E has rank nf.

A glinear map f: EY — F is alternating if f(e1,...,e,) = 0 whenever
e; = e; for some 7 < j. This condition implies that f is in fact antisymmetric:
interchanging any two elements in the sequence (e, ..., e,) changes the sign
of f(e,...,eq), and more generally applying a permutation to the sequence
changes the sign of f by the sign of the permutation. There is a universal
alternating ¢-linear map

E1— NE :(e1,...,e0) = e1 A+ Ney.

If (e1,..., e, is a basis for £, then the set of elements e; :=ej, A ... er,, with

I <Iy--- <1, is a basis for A7E. Thus AE is free of rank (Z)
There is a commutative diagram:

[a¥)

EP x B4 Ep+q

ANPE x NME —— APTIE
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which gives the direct sum
NE :=o,NE
the structure of a skew-commutative algebra, with the multiplication law

written as (a,b) — a Ab. Thusa Ab= (—1)"bAaifa € N'F and b € AE.
Now suppose that ¢: E — R is a homomorphism. For each ¢, the map

E?— Aq_lE : (61, R eq) — ZQS(Gi)(—l)i_lel VAR éz SORIVAY €q-

is g-linear and alternating, and hence factors through a homomorphism
Gy NE — AR,

(sometimes called exterior multiplication. One easily verifies that if a € A'F
and b € A7 E, then

Sg(a Nb) = dg(a) Ab+ (=1)'a A d(b).

One can use this formula to prove easily by induction on ¢ that ¢,_1¢, = 0,
so that we get a chain complex

K.(¢) = {(Ky dg) = (A"E, 6) -

Definition 0.1 If F is an R-module and ¢: E — R a homomorphism, then
the chain complex K.(¢) described above is the Kozul complex of ¢. More
generally, if M is an R-module, K (¢, M) is the tensor product K.(¢) @ M.

For example, if F = R and ¢ is multiplication by x, then K.(¢, M) is the

complex:

M~ M
placed in degrees 1 and 0. Thus H;(¢, M) is the kernel of multiplication
by = and Hy(¢, M) is the cokernel. In general, Kyo(¢) = A’E = R and
¢1 = ¢:E — R. Thus Hy(¢) = Cok(¢) = R/I, where I is the image of
¢o:E — R.

An important example is the following. Let us start with an ideal I in R
and choose a sequence z. := (x1,...,x,) of generators for I. Let E := R"
and let ¢: E — R be the map determined by the sequence x.. Then the first
two terms of K.(¢) form the start of a free resolution of R/I. The next term
consists of the “trivial” relations among the generators—in general there
may other relations as well, so the Koszul complex may not a resolution of
R/I. We will see below that it is a resolution if the sequence z. is a regular
sequence. First we shall make some general remarks.
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Proposition 0.2 Let ¢: E — R be a homomorphism and let M be an R-
module and let [ := Im(¢: E — R).

1. Ho(¢, M) is canonically isomorphic to M /IM.
2. For every q, H,(¢, M) is annihilated by I.

3. The differentials of the complex K (¢, M) ® R/I are all zero.

Proof: The first statement is clear. For the second, it is enough to show
that for every e € E, multiplication by ¢(e) acts as zero on H,(¢, M). In
fact we shall show that ¢(e) acting on K.(¢, M) is homotopic to zero. Note
that multiplication by e defines a family of homomorphisms:

pLANE — A E v e Aw

which we can view as a homotopy operator p. on the complex K,(¢). One
computes immediately that ¢p.+p.¢ is just multiplication by ¢(e) on K. (¢, M),
as claimed. To prove the third statement, observe from the definition that
dqler,...,eq) € TN and hence ¢, induces the zero map when reduced
modulo 1. O

We asserted above that the Kozul complex K.(¢) is built out of the trivial
relations amount a set of generators. This suggests that it should be con-
tained in any resolution of R/I. In fact this is the case in the sense of the
following proposition.

Proposition 0.3 Let E be a finitely generated projective R-module, let
¢: ' — R be a homomorphism, and let I be an ideal of R containing the
image of ¢. Then the Kozsul complex K (¢) admits an augmentation K (¢) —
R/I, and the boundary maps of K(¢) are zero modulo I. Suppose that
F. — R/I is any projective resolution of R/I whose boundary maps are
zero modulo I, and let f.: K(¢) — F. be any homomorphism of complexes
compatible with the augmentations. Suppose that I/I? is a flat R/I-module.
Then for each q, fq ® idg,; is injective.

Proof: We argue by induction on ¢q. If ¢ = 0 we have a commutative



diagram:

R R/I
o id
F— " R/I

Then € o fy becomes the identity modulo I, and it follows that fy ® idg/; is
injective.

If ¢ = 1, we use the fact that the boundary maps d; of K(¢) and F. are
zero modulo I to get a commutative diagram:

E I
fi fo
ot IF,,

where f) is the homomorphism induced by fo. Since Fj is projective, the
natural map I® Fy — I Fyis an isomorphism, and this square can be rewritten
as follows:

E I®R
fi id; ® fo
F 1 ® Fy,
When reduced modulo 7, this square becomes:
E/IE I/IP® R/I
J1 ®idgs id;/r2 ® (fo®idg)r)
F/IF, I/’ ® Fy/IF,

We have already observed that f, ® idg/; is injective, and since I/1 2 is flat,
the vertical arrow on the right is also injective. The top horizontal arrow is
also injective by assumption, and it follows that f; ® idg,; is also injective.
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For the general inductive step, we first note that for each ¢, there is a
homomorphism

Vg NE S EQANTEeiAreg—= > (—1) e, @er A6 Aeg.

I claim that this map is a split monomorphism. I only give the proof when
E is free. In this case we choose a basis (eq,...,e,) for E. Then a basis for
A7 is given by the set of elements of the form e; := e;, A---ey,, where [ is
a multiindex such that I; < I, < ... < I,. A basis for £ ® A9 'E is thus
given by elements of the form e; ® e; where J is a multiindex J; < Jo < Jy_;.
Then we can define a section of our map by sending e; ®e; to e; Aeyif i < J;
and to zero otherwise.

Now suppose that ¢ > 2, and note that the boundary map ¢, of K, is
the compositite of 1, and ¢ ® id. Thus we get a commutative diagram:

ke sk,

fq ¢®fq—1

dq
F, R® F,_

The map on the bottom factors by assumption through I'F, | = I ® F, 1,
and ¢ factor through a map ¢: E — I. This gives a diagram

KE-YEsK, ,

fq (5®qu1

dq
F, [®F,,,

which reduces to

K,Ew R/ B/IEw K, \/IK,

Jq (¢ ®idr/) ® (fe—1 ®idgyr)

R

F,/1F, —* I/I?® F, 1/IF, 1,
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Since 1, and ¢ and f,_; are injective mod I and the modules are flat
modulo I, it follows that the composite arrow is injective mod I, and hence
S0 is fq. m

Corollary 0.4 Let R be a noetherian local ring with maximal ideal m and
residue field k. Let e := dimm/m?. Then Tor,(k, k) has dimenison at least

(Z) for every q. In particular Tor.(k,k) # 0 and hd(k) > e.

Let £/ — E be a homomorphism of R-modules. Then a homomorphism
¢:E — R induces a homomorphism ¢": F — R, and it is clear from our
construction that one for every M one gets a homomorphism of Koszul com-
plexes:

K.(¢', M) — K.(¢, M)

(functorially in M). Let I’ be the image of ¢’. Then if E” is the cokernel of
E’" — E, one has a commutative diagram

E' - F -
/
L
I - R - RJI

Suppose now that we have a split exact sequence
0-E B2 B — 0

The cokernel of AE" — A?F is in general not so easy to describe. When E”
is projective of rank one, however, it is not difficult. I claim that in this case,
there is a natural isomorphism

E'@ANT'E — NME/NE ¢ @w v s(e) A f(W),
where s: E” — E is any splitting of g. (The inverse is induced by the map

NE = E'"QANTE ter A Negr Y gle) (1) M t(en) A6 A tey),

where t: E — E’ is the splitting induced by s.



Lemma 0.5 Let 0 - E' — E — E” — 0 be a short exact sequence of
R-modules, where E" is projective of rank one, let ¢: E — R be a homomor-
phism, inducing a homomorphism ¢': E' — R.

1. There is an exact sequence of complexes

0— K.(¢') > K.(¢) = K.(¢/, E")[-1] = 0

2. Let s be any splitting of g, inducing then a term-by-term splitting of
the exact sequence of complexes

0— K.(¢") = K.(¢p) - K.(¢/, E") — 0.
Then the corresponding map of complexes
w: K.(¢, E")[-1] — K.(¢)[-1]
is the identity tensored with ¢" := ¢ o s: B — R.

3. For any M, there is a corresponding long exact sequence of cohomology:
o 'Hq(¢/7 M) - Hq(¢v M) - Hq—l((b/a M)®E// e Hq—1<¢/a M) e

Note that H,(¢', M) is annihilated by I’, and hence is naturally an R/I’-
module. This implies that the map ¢” acting on the cohomology above
is independent of the choice of the splitting. Furthermore, the kernel and
cokernel of this map can be interpreted as the Koszul homology of ¢”. Thus
we find exact sequences

0= Ho(¢", Hy(¢', M) = Hy(d, M) — Hi(¢", Hyr(¢', M)) = 0 (1)

Theorem 0.6 Let (z1,...,x,) be a sequence of elements in R, let I be the
ideal it generates, and let

¢o:F =R — R
be the map sending e; to x;. Finally, let M be an R-module.

1. Ho(¢, M)~ M ® R/I



2. If (z1,...,x,) is M-regular, H;(¢, M) =0 for i > 0.

3. If M is noetherian and R is local and all x; belong to its maximal ideal,
then the converse of (2) is true. In fact it is enough to assume that

Hy(¢, M) = 0.

Proof: The first statement is clear. We prove the second statement by
induction on r. If » = 1 the statement is clear from the explicit description
of the Koszul complex. For the induction step, let £’ be the submodule
of E spanned by the first » — 1 basis vectors. Then ¢’ corresponds to the
sequence (z1,...,x,_1) which is M-regular. It follows from the induction
assumption that H,(¢', M) = 0 for ¢ > 0. Then the sequence 1 above shows
that H,(¢, M) = 0 for ¢ > 2. Moreover, Hy(¢', M) = M/I'M, where I’ is
generated by (x1,...,2,_1), and by hypothesis, z, acts injectively on this
module, Thus H;(¢", Hy(¢', M)) = 0, and hence H;(¢, M) also vanishes.

We also prove the converse by induction on r. If r = 1, Hy(¢, M) iden-
tifies with the kernel of multiplication by i, so its vanishing implies that
xy1 is M-regular. For the induction step, we again use the exact sequence

(1). The vanishing of H;(¢, M) implies that Hy(¢, Hy(¢', M)) = 0 and hence
that z, acts injectively on M/I’M. But it also implies the vanishing of
Ho(¢" Hi(¢',M)) = Hi(¢/, M) ® R/(x,). Since Hy(¢', M) is finitely gen-
erated and x, belongs the maximal ideal, Nakayama’s lemma implies that
H(¢', M) = 0. Then the induction hypothesis implies that (x1,...,2z,_1) is
M-regular. O]

Theorem 0.7 Let R be a noetherian local regular ring of dimension d and
let k be its residue field. Then pd(k) = d, and for every finitely generated
R-module M, pd(M) < d.

Proof: Since R is regular, its maximal ideal is generated by d elements,
which form a regular sequence. The corresponding Koszul complex is then
exact, and gives a projective resolution of length d of k. This shows that
pd(k) < d. On the other hand, all the boundary maps in the Koszul complex
reduce to zero when tensored with k, so T'or;(k, k) is not zero for i < d. This
shows that the projective dimension of k is exactly d. Moreover, for every
M, Tor;(k, M) = 0 for i > d and hence Tor;(M,k) = 0 for ¢ > d. When M
is finitely generated, this implies that pd(M) < d.
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