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Let R be a commutative ring, let E be an R-module, and let q be a
natural number. A q-linear map from E to an R-module F is a function
f :Eq → F which is linear in each variable separately:

f(e1, . . . , aei + a′e′i, . . . , eq) = af(e1, . . . , ei, . . . eq) + a′f(e1, . . . , e
′
i, . . . , eq).

There is a universal q-linear map

Eq → T qE : (e1, . . . , eq) 7→ e1 ⊗ · · · ⊗ eq.
If E is free with basis (e1, . . . en), then T qE is also free, with basis the set of
elements of the form eI = eI1 ⊗ eI2 ⊗ · · · ⊗ eIq , where 1 ≤ Ii ≤ n for each n.
Thus T iE has rank nq.

A q-linear map f :Eq → F is alternating if f(e1, . . . , eq) = 0 whenever
ei = ej for some i < j. This condition implies that f is in fact antisymmetric:
interchanging any two elements in the sequence (e1, . . . , eq) changes the sign
of f(e1, . . . , eq), and more generally applying a permutation to the sequence
changes the sign of f by the sign of the permutation. There is a universal
alternating q-linear map

Eq → ΛqE : (e1, . . . , eq) 7→ e1 ∧ · · · ∧ eq.
If (e1, . . . , en is a basis for E, then the set of elements eI := eI1 ∧ . . . eIq , with

I1 < I2 · · · < Iq is a basis for ΛqE. Thus ΛqE is free of rank
(
n
q

)
.

There is a commutative diagram:

Ep × Eq
∼= - Ep+q

ΛpE × ΛqE
?

- Λp+qE
?
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which gives the direct sum

Λ·E := ⊕qΛqE

the structure of a skew-commutative algebra, with the multiplication law
written as (a, b) 7→ a ∧ b. Thus a ∧ b = (−1)ijb ∧ a if a ∈ ΛiE and b ∈ ΛjE.

Now suppose that φ:E → R is a homomorphism. For each q, the map

Eq → Λq−1E : (e1, . . . eq) 7→
∑
i

φ(ei)(−1)i−1e1 ∧ · · · êi · · · ∧ eq.

is q-linear and alternating, and hence factors through a homomorphism

φq: ΛqE → Λq−1E,

(sometimes called exterior multiplication. One easily verifies that if a ∈ ΛiE
and b ∈ Λq−jE, then

φq(a ∧ b) = φq(a) ∧ b+ (−1)ia ∧ φ(b).

One can use this formula to prove easily by induction on q that φq−1φq = 0,
so that we get a chain complex

K·(φ) := {(Kq, dq) := (ΛqE, φq)}.

Definition 0.1 If E is an R-module and φ:E → R a homomorphism, then
the chain complex K·(φ) described above is the Kozul complex of φ. More
generally, if M is an R-module, K(φ,M) is the tensor product K·(φ)⊗M .

For example, if E = R and φ is multiplication by x, then K·(φ,M) is the
complex:

M
x- M

placed in degrees 1 and 0. Thus H1(φ,M) is the kernel of multiplication
by x and H0(φ,M) is the cokernel. In general, K0(φ) = Λ0E = R and
φ1 = φ:E → R. Thus H0(φ) = Cok(φ) = R/I, where I is the image of
φ:E → R.

An important example is the following. Let us start with an ideal I in R
and choose a sequence x· := (x1, . . . , xn) of generators for I. Let E := Rn

and let φ:E → R be the map determined by the sequence x·. Then the first
two terms of K·(φ) form the start of a free resolution of R/I. The next term
consists of the “trivial” relations among the generators—in general there
may other relations as well, so the Koszul complex may not a resolution of
R/I. We will see below that it is a resolution if the sequence x· is a regular
sequence. First we shall make some general remarks.
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Proposition 0.2 Let φ:E → R be a homomorphism and let M be an R-
module and let I := Im(φ:E → R).

1. H0(φ,M) is canonically isomorphic to M/IM .

2. For every q, Hq(φ,M) is annihilated by I.

3. The differentials of the complex Kq(φ,M)⊗R/I are all zero.

Proof: The first statement is clear. For the second, it is enough to show
that for every e ∈ E, multiplication by φ(e) acts as zero on Hq(φ,M). In
fact we shall show that φ(e) acting on K·(φ,M) is homotopic to zero. Note
that multiplication by e defines a family of homomorphisms:

ρqe: ΛqE → Λq+1E:ω 7→ e ∧ ω

which we can view as a homotopy operator ρe on the complex Kq(φ). One
computes immediately that φρe+ρeφ is just multiplication by φ(e) onK·(φ,M),
as claimed. To prove the third statement, observe from the definition that
φq(e1, . . . , eq) ∈ IΛq−1, and hence φq induces the zero map when reduced
modulo I.

We asserted above that the Kozul complex K·(φ) is built out of the trivial
relations amount a set of generators. This suggests that it should be con-
tained in any resolution of R/I. In fact this is the case in the sense of the
following proposition.

Proposition 0.3 Let E be a finitely generated projective R-module, let
φ:E → R be a homomorphism, and let I be an ideal of R containing the
image of φ. Then the Kozsul complex K(φ) admits an augmentation K(φ)→
R/I, and the boundary maps of K(φ) are zero modulo I. Suppose that
F· → R/I is any projective resolution of R/I whose boundary maps are
zero modulo I, and let f·:K(φ) → F· be any homomorphism of complexes
compatible with the augmentations. Suppose that I/I2 is a flat R/I-module.
Then for each q, fq ⊗ idR/I is injective.

Proof: We argue by induction on q. If q = 0 we have a commutative
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diagram:

R - R/I

F0

f0

? ε
- R/I

id

?

Then ε ◦ f0 becomes the identity modulo I, and it follows that f0 ⊗ idR/I is
injective.

If q = 1, we use the fact that the boundary maps d1 of K(φ) and F· are
zero modulo I to get a commutative diagram:

E - I

F1

f1

?
- IF0,

?

f ′0

where f ′0 is the homomorphism induced by f0. Since F0 is projective, the
natural map I⊗F0 → IF0 is an isomorphism, and this square can be rewritten
as follows:

E - I ⊗R

F1

f1

?
- I ⊗ F0,

?

idI ⊗ f0

When reduced modulo I, this square becomes:

E/IE - I/I2 ⊗R/I

F1/IF1

f1 ⊗ idR/I

?
- I/I2 ⊗ F0/IF0

?

idI/I2 ⊗ (f0 ⊗ idR/I)

We have already observed that f0 ⊗ idR/I is injective, and since I/I2 is flat,
the vertical arrow on the right is also injective. The top horizontal arrow is
also injective by assumption, and it follows that f1 ⊗ idR/I is also injective.
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For the general inductive step, we first note that for each q, there is a
homomorphism

ψq: ΛqE → E ⊗ Λq−1E : e1 ∧ · · · eq 7→
∑
i

(−1)i−1ei ⊗ e1 ∧ · · · êi ∧ eq.

I claim that this map is a split monomorphism. I only give the proof when
E is free. In this case we choose a basis (e1, . . . , en) for E. Then a basis for
Λq is given by the set of elements of the form eI := eI1 ∧ · · · eIq , where I is
a multiindex such that I1 < I2 < . . . < Iq. A basis for E ⊗ Λq−1E is thus
given by elements of the form ei⊗eJ where J is a multiindex J1 < J2 < Jq−1.
Then we can define a section of our map by sending ei⊗eJ to ei∧eJ if i < J1
and to zero otherwise.

Now suppose that q ≥ 2, and note that the boundary map φq of Kq is
the compositite of ψq and φ⊗ id. Thus we get a commutative diagram:

KqE
ψq- E ⊗Kq−1

Fq

fq

? dq- R⊗ Fq−1

φ⊗ fq−1

?

The map on the bottom factors by assumption through IFq−1 ∼= I ⊗ Fq−1,
and φ factor through a map φ̃:E → I. This gives a diagram

KqE
ψq- E ⊗Kq−1

Fq

fq

? d̃q- I ⊗ Fq−1,

φ̃⊗ fq−1

?

which reduces to

KqE ⊗R/I
ψq - E/IE ⊗Kq−1/IKq−1

Fq/IFq

fq

? d̃q - I/I2 ⊗ Fq−1/IFq−1,

(φ̃⊗ idR/I)⊗ (fq−1 ⊗ idR/I

?

)

5



Since ψq and φ and fq−1 are injective mod I and the modules are flat
modulo I, it follows that the composite arrow is injective mod I, and hence
so is fq.

Corollary 0.4 Let R be a noetherian local ring with maximal ideal m and
residue field k. Let e := dimm/m2. Then Torq(k, k) has dimenison at least(
e
q

)
for every q. In particular Tore(k, k) 6= 0 and hd(k) ≥ e.

Let E ′ → E be a homomorphism of R-modules. Then a homomorphism
φ:E → R induces a homomorphism φ′:E → R, and it is clear from our
construction that one for every M one gets a homomorphism of Koszul com-
plexes:

K·(φ′,M)→ K·(φ,M)

(functorially in M). Let I ′ be the image of φ′. Then if E ′′ is the cokernel of
E ′ → E, one has a commutative diagram

E ′ - E - E ′′

I ′
?

- R

φ

?
-

φ′

-

R/I ′
?

Suppose now that we have a split exact sequence

0→ E ′
f- E

g- E ′′ - 0.

The cokernel of ΛqE ′ → ΛqE is in general not so easy to describe. When E ′′

is projective of rank one, however, it is not difficult. I claim that in this case,
there is a natural isomorphism

E ′′ ⊗ Λq−1E ′ → ΛqE/ΛqE ′ : e′ ⊗ ω′ 7→ s(e′) ∧ f(ω′),

where s:E ′′ → E is any splitting of g. (The inverse is induced by the map

ΛqE → E ′′ ⊗ Λq−1E ′ : e1 ∧ · · · ∧ eq 7→
∑
i

g(ei)(−1)i−1t(e1) ∧ · · · êi ∧ · · · t(eq),

where t:E → E ′ is the splitting induced by s.
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Lemma 0.5 Let 0 → E ′ → E → E ′′ → 0 be a short exact sequence of
R-modules, where E ′′ is projective of rank one, let φ:E → R be a homomor-
phism, inducing a homomorphism φ′:E ′ → R.

1. There is an exact sequence of complexes

0→ K·(φ′)→ K·(φ)→ K·(φ′, E ′′)[−1]→ 0

2. Let s be any splitting of g, inducing then a term-by-term splitting of
the exact sequence of complexes

0→ K·(φ′′)→ K·(φ)→ K·(φ′, E ′′)→ 0.

Then the corresponding map of complexes

w:K·(φ′, E ′′)[−1] - K·(φ′)[−1]

is the identity tensored with φ′′ := φ ◦ s:E ′′ → R.

3. For any M , there is a corresponding long exact sequence of cohomology:

· · ·Hq(φ
′,M)→ Hq(φ,M)→ Hq−1(φ

′,M)⊗E ′′ φ′′- Hq−1(φ
′,M)→ · · ·

Note that Hq(φ
′,M) is annihilated by I ′, and hence is naturally an R/I ′-

module. This implies that the map φ′′ acting on the cohomology above
is independent of the choice of the splitting. Furthermore, the kernel and
cokernel of this map can be interpreted as the Koszul homology of φ′′. Thus
we find exact sequences

0→ H0(φ
′′, Hq(φ

′,M))→ Hq(φ,M)→ H1(φ
′′, Hq−1(φ

′,M))→ 0 (1)

Theorem 0.6 Let (x1, . . . , xr) be a sequence of elements in R, let I be the
ideal it generates, and let

φ:E := Rr → R

be the map sending ei to xi. Finally, let M be an R-module.

1. H0(φ,M) ∼= M ⊗R/I
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2. If (x1, . . . , xr) is M -regular, Hi(φ,M) = 0 for i > 0.

3. If M is noetherian and R is local and all xi belong to its maximal ideal,
then the converse of (2) is true. In fact it is enough to assume that
H1(φ,M) = 0.

Proof: The first statement is clear. We prove the second statement by
induction on r. If r = 1 the statement is clear from the explicit description
of the Koszul complex. For the induction step, let E ′ be the submodule
of E spanned by the first r − 1 basis vectors. Then φ′ corresponds to the
sequence (x1, . . . , xr−1) which is M -regular. It follows from the induction
assumption that Hq(φ

′,M) = 0 for q > 0. Then the sequence 1 above shows
that Hq(φ,M) = 0 for q ≥ 2. Moreover, H0(φ

′,M) ∼= M/I ′M , where I ′ is
generated by (x1, . . . , xr−1), and by hypothesis, xr acts injectively on this
module, Thus H1(φ

′′, H0(φ
′,M)) = 0, and hence H1(φ,M) also vanishes.

We also prove the converse by induction on r. If r = 1, H1(φ,M) iden-
tifies with the kernel of multiplication by x1, so its vanishing implies that
x1 is M -regular. For the induction step, we again use the exact sequence
(1). The vanishing of H1(φ,M) implies that H1(φ,H0(φ

′,M)) = 0 and hence
that xr acts injectively on M/I ′M . But it also implies the vanishing of
H0(φ

′′, H1(φ
′,M)) = H1(φ

′,M) ⊗ R/(xr). Since H1(φ
′,M) is finitely gen-

erated and xr belongs the maximal ideal, Nakayama’s lemma implies that
H1(φ

′,M) = 0. Then the induction hypothesis implies that (x1, . . . , xr−1) is
M -regular.

Theorem 0.7 Let R be a noetherian local regular ring of dimension d and
let k be its residue field. Then pd(k) = d, and for every finitely generated
R-module M , pd(M) ≤ d.

Proof: Since R is regular, its maximal ideal is generated by d elements,
which form a regular sequence. The corresponding Koszul complex is then
exact, and gives a projective resolution of length d of k. This shows that
pd(k) ≤ d. On the other hand, all the boundary maps in the Koszul complex
reduce to zero when tensored with k, so Tori(k, k) is not zero for i ≤ d. This
shows that the projective dimension of k is exactly d. Moreover, for every
M , Tori(k,M) = 0 for i > d and hence Tori(M,k) = 0 for i > d. When M
is finitely generated, this implies that pd(M) ≤ d.
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