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For some reason, calculating colimits, say in the category of sets, seems to
be more difficult that calculating limits: forming colimits require taking the
“quotient” by an equivalence relation which can be difficult to make explicit.
The calculations are much easier when the following conditions are fulfilled.

Definition A category I is said to be filtering if it satisfies the following
conditions:

1. It is not empty.

2. For any two objects i and j, there exists arrows a and b such that
s(a) = i, s(b) = j, and t(a) = t(b):

3. For any two arrows a and b with the same source and target, there
exists an arrow c such that ca = cb.

For example, the category N of natural numbers is filtering. Its opposite, is
also filtering but it in a trivial way, in that it has final object. (Observe that,
in general, if I has a final object o, then for every i there is a unique arrow
ai: i→ 0, and if C· is an I-system, colim(C·) is just C0, and {Cai : i ∈ I} is
the universal family.)

Colimits over filtering categories are sometimes called direct limits. The
following result gives an explicit description of colimits over filtering cate-
gories in the category of sets.

Theorem Let I be a filterting category and let S· be an I-system of
sets. Let S∗ denote the disjoint union of all the sets Si and let E ⊆ S∗ × S∗
be the set of pairs (si, sj) ∈ S∗ × S∗ such that there exist arrows a and b
in I such that Source(a) = i, Source(b) = j, Target(a) = Target(b), and
Sa(si) = Sb(sj). Then E is an equivalence relation, the quotient S∗/E is a
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colimit of S·, and the evident family of maps qi:Si → S∗/E is a universal
compatible family

Corollary If I is filtering, forming the colimit over I commutes with the
forget functor from the category of abelian groups to the category of sets.

Example. Let M be a monoid and let S be an M -set. The transporter
category of S is the category whose objects are the elements of S, and for
s, s′ ∈ S, the arrows from s to s′ are the elements m of M such that ms = s′.
Then multiplication in M defines a composition law to make this collection
of objects and arrows into a category. Let us check that if M is commutative
and if S is M , acting on itself, then the transporter category is filtering. It
is not empty because M contains a unit element. Suppose that s and t are
elements of S. Then st = ts, and t maps s to ts = st and s maps t to
st = ts, so (2) is satisfied. Suppose next that a and b are arrows from s to t,
so that as = t and bs = t. Let u := st. Then s is an arrow from t to u and
sa = sb, so (3) is also satisfied. It is however not true that the transporter
category of every M -set is filtering. A not so obvious theorem asserts that
the transporter category of an M -set S is filtering if and only if S is a direct
limit (filtered colimit) of free M -sets.

Localization Now let C be a category, and suppose that all filtered col-
imits exist in C. Let E be an object of C and let S be a commutative monoid
acting by endomorphisms of E. For s ∈ S we denote the corresponding endo-
morphism of E by µE(s). For example, C might be the category of modules
over a ring R, S might be a submonoid of the multiplicative monoid of R
and E an R-module. Let I be the transporter category of S, viewed as an
S-set acting on itself, and define an I-diagram E· in C by sending every i ∈ I
to E and every arrow a to µE(a):Ei = E → Eai = E. Let {qi:Ei → L}
be the colimit, i.e., the universal family of maps satifying the compatibility
condition

qi = qti ◦ µE(t) (1)

for all i ∈ I and all t ∈ S. The commutativity of S implies that, for every
s ∈ S, µE(s) defines a map Ei → Ei which is compatible with all the maps
qi. By the universal property of L, we find a unique map µL(s):L→ L such
that µL(s) ◦ qi = qi ◦ µEi

(s) for every i.

Theorem The object L above has the following properties.

1. For every s ∈ S, the arrow µL(s):L→ L is an isomorphism.
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2. The map q0:E → L is compatible with the actions of S.

3. If α:E → F is another arrow in C, with S acting as isomorphisms on
F , then there is a unique arrow θ:L→ F such that θ ◦ q0 = α.

Proof: To construct an inverse to µL(s), we use the following tricky argu-
ment. For each i ∈ I, recall that Ei = E = Eis, and so qis can also be viewed
as a map q̃i:Ei → L. Then {q̃i:Ei → L} is another family of compatible
maps, which then induces a map s̃:L→ L, uniquely determined by the fact
that s̃ ◦ qi = q̃i for all i. We claim that s̃ ◦ µL(s) = µL(s) ◦ s̃ = idL. To check
this, it is enough to see that the equalities hold after composing both sides
with qi. We compute:

µL(s) ◦ s̃ ◦ qi = µL(s) ◦ q̃i
= µL(s) ◦ qis
= qis ◦ µE(s)
= qi,

using equation (1) and the commutatiivty of S. Similarly;

s̃ ◦ µL(s) ◦ qi = s̃ ◦ qi ◦ µE(s)
= qis ◦ µE(s)
= qi,

Statement (2) is built in the construction. For (3), suppose that α is given.
Construct the I-diagram F· in the same way that we did for E. By hy-
pothesis, all the arrows Fi → Fis are isomorphisms. Note that the identity
element 1 of S defines an initial object 0 of I: for every i ∈ I, there is a
unique arrow ai: 0→ i (namely i). Let q′i := F−1ai

:Fi → F0. Then this family
is compatible, and it follows that the composition Ei → Fi → F0 = F also
forms a compatible family. This family induces a morphism L→ F , and we
leave the rest of the verifications to reader.

Let us return to the more down-to-earth case of R-modules. We should
compare the categorical construction given here with the usual construc-
tion of a localization of an R-module E by a multiplicative subset S of R.
Typically this is done by taking the quotient of the product E × S by the
equivalence relation given by :

(e, s) ∼ (e′, s′) iff there exist s′′ ∈ S : s′′s′e = s′′se′ (2)
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(We think of the equivalence class of (e, s) as a ratio e/s. ) Now the above
construction says to take the colimit over the I-diagram E·. Let us apply
the construction in the theorem, which says to form the disjoint union of the
sets Ei and then divide by a certain equivalence relation. Since the objects
of I are the same as the elements of S and since Ei = E for every i, this
disjoint union is exact the same as E × S. What is the equivalence relation?
It says

(e, s) ∼ (e′, s′) iff there exist t, t′ ∈ S : ts = t′s′ and te = t′e′ (3)

It is perhaps not obvious that the equivalence relations (2) and (3) are the
same. Suppose that (3) holds. Then

ts′e = s′te = s′t′e′ = t′s′e′ = tse′

Thus if we take s′′ := t, we see that (2) holds. Suppose that (2) holds. Then
take t′ := s′′s and t := s′′s′. Then

ts = s′′s′s = s′′ss′ = t′s′ and te = s′′s′e = s′′se′ = t′e′
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