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For some reason, calculating colimits, say in the category of sets, seems to
be more difficult that calculating limits: forming colimits require taking the
“quotient” by an equivalence relation which can be difficult to make explicit.
The calculations are much easier when the following conditions are fulfilled.

Definition A category [ is said to be filtering if it satisfies the following
conditions:

1. It is not empty.

2. For any two objects ¢ and 7, there exists arrows a and b such that
s(a) =1,s(b) = j, and t(a) = t(b):

3. For any two arrows a and b with the same source and target, there
exists an arrow c such that ca = cb.

For example, the category N of natural numbers is filtering. Its opposite, is
also filtering but it in a trivial way, in that it has final object. (Observe that,
in general, if I has a final object o, then for every i there is a unique arrow
a;:1 — 0, and if C. is an I-system, colim(C.) is just Cy, and {C,, : i € I} is
the universal family.)

Colimits over filtering categories are sometimes called direct limits. The
following result gives an explicit description of colimits over filtering cate-
gories in the category of sets.

Theorem Let I be a filterting category and let S. be an [-system of
sets. Let S, denote the disjoint union of all the sets S; and let £ C S, x S,
be the set of pairs (SZ‘,S]‘) € S, x S, such that there exist arrows a and b
in I such that Source(a) = i, Source(b) = j, Target(a) = Target(b), and
Sa(si) = Sp(s;). Then E is an equivalence relation, the quotient S./E is a



colimit of S.; and the evident family of maps ¢;: S; — S./E is a universal
compatible family

Corollary If [ is filtering, forming the colimit over I commutes with the
forget functor from the category of abelian groups to the category of sets.

Example. Let M be a monoid and let .S be an M-set. The transporter
category of S is the category whose objects are the elements of S, and for
s,s" € S, the arrows from s to s’ are the elements m of M such that ms = .
Then multiplication in M defines a composition law to make this collection
of objects and arrows into a category. Let us check that if M is commutative
and if S is M, acting on itself, then the transporter category is filtering. It
is not empty because M contains a unit element. Suppose that s and t are
elements of S. Then st = ts, and t maps s to ts = st and s maps t to
st = ts, so (2) is satisfied. Suppose next that a and b are arrows from s to ¢,
so that as =t and bs = t. Let u := st. Then s is an arrow from ¢t to u and
sa = sb, so (3) is also satisfied. It is however not true that the transporter
category of every M-set is filtering. A not so obvious theorem asserts that
the transporter category of an M-set S is filtering if and only if S is a direct
limit (filtered colimit) of free M-sets.

Localization Now let C be a category, and suppose that all filtered col-
imits exist in C. Let E be an object of C and let S be a commutative monoid
acting by endomorphisms of E. For s € S we denote the corresponding endo-
morphism of E by pg(s). For example, C might be the category of modules
over a ring R, S might be a submonoid of the multiplicative monoid of R
and E an R-module. Let I be the transporter category of S, viewed as an
S-set acting on itself, and define an I-diagram FE. in C by sending every i € [
to E and every arrow a to pgp(a):E; = E — E, = E. Let {¢;: E; — L}
be the colimit, i.e., the universal family of maps satifying the compatibility
condition

¢ = Qi © i (t) (1)

for all ¢ € I and all t € S. The commutativity of S implies that, for every
s € S, up(s) defines a map E; — E; which is compatible with all the maps
¢;- By the universal property of L, we find a unique map puy(s): L — L such
that pr(s) oq; = ¢; o ug,(s) for every i.

Theorem The object L above has the following properties.

1. For every s € S, the arrow pp(s): L — L is an isomorphism.



2. The map qo: £ — L is compatible with the actions of S.

3. If a: E — F is another arrow in C, with S acting as isomorphisms on
F, then there is a unique arrow 0: L — F' such that 6 o ¢y = a.

Proof: To construct an inverse to juy(s), we use the following tricky argu-
ment. For each ¢ € I, recall that F; = E' = FE;,, and so ¢;s can also be viewed
as a map ¢;: B; — L. Then {g;: E; — L} is another family of compatible
maps, which then induces a map §: L — L, uniquely determined by the fact
that §o¢q; = ¢; for all .. We claim that §o puy(s) = ur(s) o § =idy. To check
this, it is enough to see that the equalities hold after composing both sides
with ¢;. We compute:

#L(S) 0osoq = ML(S) o Gi

() © gis
Gis © pE(S)
= ¢,

using equation (1) and the commutatiivty of S. Similarly;

Sopur(s)oq = $og;opup(s)
= (s OME(S)
= (i

Statement (2) is built in the construction. For (3), suppose that « is given.
Construct the I-diagram F. in the same way that we did for E. By hy-
pothesis, all the arrows F; — Fjs are isomorphisms. Note that the identity
element 1 of S defines an initial object 0 of I: for every ¢ € I, there is a
unique arrow a;:0 — @ (namely ). Let ¢} := F, ': F; — Fy. Then this family
is compatible, and it follows that the composition E; — F; — Fy = F also
forms a compatible family. This family induces a morphism L — F', and we
leave the rest of the verifications to reader. O]

Let us return to the more down-to-earth case of R-modules. We should
compare the categorical construction given here with the usual construc-
tion of a localization of an R-module E by a multiplicative subset S of R.
Typically this is done by taking the quotient of the product E x S by the
equivalence relation given by :

(e,8) ~ (€¢/,s") iff there exist s” € S : §"s'e = §"s¢’ (2)
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(We think of the equivalence class of (e, s) as a ratio e¢/s. ) Now the above
construction says to take the colimit over the I-diagram F.. Let us apply
the construction in the theorem, which says to form the disjoint union of the
sets F; and then divide by a certain equivalence relation. Since the objects
of I are the same as the elements of S and since E; = F for every ¢, this
disjoint union is exact the same as E' x S. What is the equivalence relation?
It says

(e,s) ~ (€', s) iff there exist ¢, € S :ts =t's and te = t'e’ (3)

It is perhaps not obvious that the equivalence relations (2) and (3) are the
same. Suppose that (3) holds. Then

ts'e = s'te = s't'e’ =t's'e’ = tse’

Thus if we take s” := ¢, we see that (2) holds. Suppose that (2) holds. Then
take t' := s"s and t := s”s’. Then

/BN " / /N /v " / !/
ts =5"s's=5"ss =t's andte=s"s'e=5"s¢ =te



