Math 250B Midterm:

March 1, 2016

1. (a) Let \(E \) be an \(R \)-module. Prove that the functor \(T_E : M \to M \otimes E \) commutes with all colimits.

 Solution: This is because \(T_E \) has a right adjoint, \(h^E \), taking \(N \) to \(\text{Hom}(E,N) \). Specifically, \(\text{Hom}(M \otimes E,N) \cong \text{Hom}(M,\text{Hom}(E,N)) \).

(b) Prove that a direct limit (filtering colimit) of flat modules is flat.

 Solution: Suppose that \(E \) is a direct system of flat \(R \)-modules and that \(M' \to M \) is an injection of \(R \)-modules. Let \(E := \lim \to E_i \).

Then each \(E_i \otimes M' \to E_i \otimes M \) is injective, since each \(E_i \) is flat. Since the direct limit of injections is injective and since tensor products commute with direct limits, we find that the map \(E \otimes M' \to E \otimes M \) is injective, and hence that \(E \) is flat.

(c) Show that a more general colimit of flat modules need not be flat. (Give a counterexample.)

 Solution: Let \(R \) be the ring of polynomials in one variable \(x \) over a field \(k \). Then \(R \) is a free module over itself, hence flat. The coequalizer of \(0 \) and multiplication by \(x \) on \(R \) is the quotient \(R/(x) \), which is not flat, because \((x)/(x^2) \to R/(x) \) is not injective.

2. Let \(R \) be a commutative ring with identity, let \(\mathcal{M}_R \) be the category of \(R \)-modules, and let \(F \) be the forgetful functor from the category of \(R \)-modules to the category of sets. Find a bijection from \(R \) to the set of natural transformations \(F \to F \). (Hint: use Yoneda.)

 Solution: The functor \(F \) is represented by \(R \) itself. Then Yoneda tells us that the set of natural transformations from \(F \) to \(R \) is the same as the set of homomorphisms \(R \to R \), which is just \(R \).

3. Let \(R \) be a ring and let \(e \) be an element of \(R \) such that \(e^2 = e \). Prove that the set \(D(e) \) of all prime ideals \(P \) of \(R \) which do not contain \(e \)
is closed in the Zariski topology of R. Conclude (and explain) that if $e \neq 0$ and $e \neq 1$, then Spec(R) is not connected.

Solution: Let $e' := 1 - e$. Then $ee' = 0$ and $e + e' = 1$. Let P be a prime ideal of R. The first of these equations implies that either e or e' belongs to P and the second that only of them does. Thus Spec(R) is the disjoint union of the two sets $D(e)$ and $D(e')$. Since both of these are open, they are also closed. If $e \neq 1$, then $e' \neq 0$, and since $ee' = 0$, it follows that e is not a unit, and hence is contained some prime ideal. Thus $D(e')$ is not empty, and the same applies to $D(e)$. We have proved that Spec(R) is the disjoint union of two nonempty open sets, and hence is disconnected.

4. Suppose that R is a local ring and that R/I is a flat R-module. Prove that either $I = 0$ or $I = R$. Note: Partial credit if you do this assuming that I is finitely generated.

Solution: Let J be a finitely generated ideal contained in I. By the flatness assumption, the map $J/IJ \to R/I$ is injective. Since it is also the zero map, it follows that $J = IJ$. If $I \neq R$, it is contained in the maximal ideal of R, and it follows from Nakayama’s lemma that $J = 0$. Since this is true for every finitely generated subideal of I, necessarily $I = 0$.
