Math 250B Midterm:

March 1, 2016

- (a) Let E be an R-module. Prove that the functor T_E: M → M ⊗ E commutes with all colimits.
 Solution: This is because T_E has a right adjoint, h^E, taking N to Hom(E, N). Specifically, Hom(M ⊗ E, N) ≅ Hom(M, Hom(E, N)).
 - (b) Prove that a direct limit (filtering colimit) of flat modules is flat. **Solution:** Suppose that E is a direct system of flat R-modules and that $M' \to M$ is an injection of R-modules. Let $E := \varinjlim E$.. Then each $E_i \otimes M' \to E_i \otimes M$ is injective, since each E_i is flat. Since the direct limit of injections is injective and since tensor products commute with direct limits, we find that the map $E \otimes M' \to E \otimes M$ is injective, and hence that E is flat.
 - (c) Show that a more general colimit of flat modules need not be flat. (Give a counterexample.)
 Solution: Let R be the ring of polynomials in one variable x over a field k. Then R is a free module over itself, hence flat. The coequalizer of 0 and multiplication by x on R is the quotient R/(x), which is not flat, because (x)/(x²) → R/(x) is not injective.
- 2. Let R be a commutative ring with identity, let \mathcal{M}_R be the category of R-modules, and let F be the forgetful functor from the category of R-modules to the category of sets. Find a bijection from R to the set of natural transformations $F \to F$. (Hint: use Yoneda.) **Solution:** The functor F is represented by R itself. Then Yoneda tells us that the set of natural transformations from F to R is the same as the set of homomorphisms $R \to R$, which is just R.
- 3. Let R be a ring and let e be an element of R such that $e^2 = e$. Prove that the set D(e) of all prime ideals P of R which do not contain e

is closed in the Zariski topology of R. Conclude (and explain) that if $e \neq 0$ and $e \neq 1$, then Spec(R) is not connected.

Solution: Let e' := 1 - e. Then ee' = 0 and e + e' = 1. Let P be a prime ideal of R. The first of these equations implies that either e or e' belongs to P and the second that only of them does. Thus $\operatorname{Spec}(R)$ is the disjoint union of the two sets D(e) and D(e'). Since both of these are open, they are also closed. If $e \neq 1$, then $e' \neq 0$, and since ee' = 0, it follows that e is not a unit, and hence is contained some prime ideal. Thus D(e') is not empty, and the same applies to D(e). We have proved that $\operatorname{Spec}(R)$ is the disjoint union of two nonempty open sets, and hence is disconnected.

4. Suppose that R is a local ring and that R/I is a flat R-module. Prove that either I = 0 or I = R. Note: Partial credit if you do this assuming that I is finitely generated.

Solution: Let J be a finitely generated ideal contained in I. By the flatness assumption, the map $J/IJ \rightarrow R/I$ is injective. Since it is also the zero map, it follows that J = IJ. If $I \neq R$, it is contained in the maximal ideal of R, and it follows from Nakayama's lemma that J = 0. Since this is true for every finitely generated subideal of I, necessarily I = 0.