Let A be a ring, let I be an ideal of A and let \hat{A} denote the I-adic completion of A.

1. Show that if I is nilpotent, then the natural map $A \to A/I$ induces a bijection from the set of idempotents in A to the set of idempotents in A/I.

2. Show that the natural map from \hat{A} to A/I induces a bijection from the set of idempotents of \hat{A} to the set of idempotents of A/I.

3. More generally, let f be an element in the polynomial ring $A[x]$. Suppose that f and its derivative f' generate the unit ideal of $A/I[x]$. Show that the map $\hat{A} \to A/I$ induces a bijection on the set of zeroes of f.

4. Suppose now that A is noetherian and M a finitely generated A-module. Let \hat{M} be the I-adic completion of M. Show that for every n, the natural map $M/I^n M \to \hat{M}/I^n \hat{M}$ is an isomorphism. Conclude that the natural map $\hat{M} \to \hat{\hat{M}}$ is an isomorphism.

5. Let A be the polynomial ring $k[x, y]$ in two variables over a field k and let I be the ideal (x, y).

 (a) Find an isomorphism from the Rees-algebra $B_I(R)$ to the A-algebra $A[X, Y]/(xY - yX)$.

 (b) Show that the I-adic completion \hat{A} is isomorphic to the ring of formal power series $k[[x, y]]$.