Homework Assignment #3: More on Limits

February 3, 2016

- 1. Let C be a category. Suppose that in C, all products (limits over small discrete categories) and all equalizers are representable. Then all limits are representable. What is the dual statement?
- 2. Suppose that the category I has final object ∞ . Show that if C is any object of C^{I} , then the functor **colim** C taking T to $Mor_{C^{I}}(C, K(T))$ is representable by a pair (C_{∞}, ξ) . What is ξ ? What is the dual statement?
- 3. Let \mathcal{C} be a category. Prove that $\hat{\mathcal{C}}$ always has a final object. What is it?
- Let F be the forgetful functor from the category of abelian groups to the category of sets. Show that F commutes with filtering direct limits. (This fact was mentioned in class.)
- 5. Let I and J be small categories and let C. be a bifunctor from $I \times J$ to a category C. Prove that there is a natural transformation

 $\operatorname{colim} \lim \mathcal{C}_{\cdot} \to \lim \operatorname{colim} \mathcal{C}_{\cdot},$

assuming both sides exist. Now assume that I is filtered and that J is finite (that is, it has only finitely many objects and only finitely many arrows). Prove that, if C is the category of sets, the above map is an isomorphism.

6. In the previous example, show that the map need not be an isomorphism if I and J are discrete and have two objects. Also show that

this map need not be an isomorphism if I = J is the category with two objects 1, 2, with two distinct arrows $a, b: 1 \to 2$. Hint. Try the following. Take $S_1, S_2 \in \mathcal{E}ns$ with $S_1 := \{x\}, S_2 := \{y, z\}$. Let $C_a: x \mapsto y$, $C_b: x \mapsto z$. Compute the equalizer and the coequalizer of C_a, C_b . Then build a suitable bifunctor.