1. Prove that the polynomial $y^6 - x^3 - 3$ has no zeroes in the ring \mathbb{Z} of integers. (One possibility: reduce modulo a suitable prime p.)

2. Prove that the polynomial $y^2 + x^2 - 1$ is not a unit in the ring of polynomials with rational coefficients.

3. A groupoid is a category in which every morphism is an isomorphism. Prove that every groupoid \mathcal{C} is isomorphic to its opposite \mathcal{C}^o, and in fact that there exists a “canonical” isomorphism $\mathcal{C} \rightarrow \mathcal{C}^o$. What does “canonical” mean?

4. Let M be a monoid and let S be a set. Define what is meant by a “left action of M on S.” A set together with a left action of M is called an “M-set.” Define what is meant by a morphism of M-sets. Let \mathcal{B}_M be the category of M-sets, and let F be the forget functor from \mathcal{B}_M to the category of sets. Find all the natural transformations from F to itself.

5. (You may find this problem too vague, since it contains some terms not defined in class. If so, just skip it.) Formulate elementary linear algebra as a statement about an equivalence of categories: $F: \mathcal{C} \rightarrow \mathcal{V}$. Here \mathcal{V} is the category of finite dimensional vector spaces over a field and \mathcal{C} is a category built from matrices. In \mathcal{C}, there should be only one element in each isomorphism class.

6. Let R be a commutative ring and let \mathcal{A}_R denote the category of R-algebras. Let A be an object of \mathcal{A}_R, let h^A be the functor from \mathcal{A}_R to the category of sets taking B to $\text{Mor}_{\mathcal{A}_R}(A, B)$, and let F be the
forgetful functor from A_R to the category of sets. Find all natural transformations from h^A to F.