Homework Assignment #1: Equations and Categories

January 22, 2016

- 1. Prove that the polynomial $y^6 x^3 3$ has no zeroes in the ring **Z** of integers. (One possibility: reduce modulo a suitable prime p.)
- 2. Prove that the polynomial $y^2 + x^2 1$ is not a unit in the ring of polynomials with rational coefficients.
- 3. A grouipoid is a category in which every morphism is an isomorphism. Prove that every groupoid \mathcal{C} is isomorphic to its opposite \mathcal{C}^o , and in fact that there exists a "canonical" isomorphism $\mathcal{C} \to \mathcal{C}^o$. What does "canonical" mean?
- 4. Let M be a monoid and let S be a set. Define what is meant by a "left action of M on S." A set together with a left action of M is called an "M-set." Define what is meant by a morphism of M-sets. Let \mathcal{B}_M be the category of M-sets, and let F be the forget functor from \mathcal{B}_M to the category of sets. Find all the natural transformations from F to itself.
- 5. (You may find this problem too vague, since it contains some terms not defined in class. If so, just skip it.) Formulate elementary linear algebra as a statement about an equivalence of categories: $F: C \to V$. Here V is the category of finite dimensional vector spaces over a field and C is a category built from matrices. In C, there should be only one element in each isomorphism class.
- 6. Let R be a commutative ring and let \mathcal{A}_R denote the category of Ralgebras. Let A be an object of \mathcal{A}_R , let h^A be the functor from \mathcal{A}_R to the category of sets taking B to $Mor_{\mathcal{A}_R}(A, B)$, and let F be the

forgetful functor from \mathcal{A}_R to the category of sets. Find all natural transformations from h^A to F.