The simplicity of the alternating groups

September 16, 2010

Theorem 0.1 If $n \geq 5$, the alternating group A_{n} is simple.
Proof: We proved that A_{5} is simple by computing its conjugacy classes. We continue by induction.

Lemma 0.2 Let A be a set with n elements. Then the action of S_{A} on A is m-fold transtive for all $m \leq n$, and the action of A_{A} on A is m-fold transitive for all $m \leq n-2$.

Proof: Suppose that $1 \leq m \leq n$ and $\left(a_{1}, \ldots, a_{m}\right)$ and $\left(b_{1}, \ldots, b_{m}\right)$ are injective sequences in A. There is evidently an element σ of S_{A} taking each a_{i} to b_{i}. This shows that the action of S_{A} is m-fold transitive. Now if $m \leq n-2$ and the σ chosen above is not in A_{A}, there at least two elements, say c_{1} and c_{2}, in $\{1, \ldots, n\}$ which are not equal to any of the b_{i} 's. Then the $\sigma^{\prime}:=\left(c_{1} c_{2}\right) \sigma$ is in A_{A} and has the same effect on the a_{i} 's as does σ.

It follows from this that if $n \geq 3$, the standard action of A_{n} is transitive, and if $n \geq 4$, it is doubly transtive, hence primitive.

Corollary 0.3 Let G be a group of order n and let $G^{*}:=G \backslash\{e\}$. The action of $\operatorname{Aut}(G)$ leaves G^{*} invariant and thus there is an injective group homomorpism $\operatorname{Aut}(G) \rightarrow S_{G^{*}}$. If $n \geq 5$, the image of this map cannot contain all of $A_{G^{*}}$.
(Remark: if $G=\mu_{2} \times \mu_{2}$, its autmorphism group is in fact all of $S_{G^{*}}$).
Proof: Say $n \geq 5$. Then $A_{G^{*}}$ acts 3 -fold transitively on G^{*}. Choose $g_{1} \in G^{*}$ and then g_{2} such that $g_{2} \neq g_{1}, g_{1}^{-1}$. Note that there is at least one more element g_{3} in G^{*} with $g_{3} \neq g_{1}, g_{2}$ and $\neq g_{1} g_{2}$. Then no automorphism of G can map $\left(g_{1}, g_{2}, g_{1} g_{2}\right)$ to $\left(g_{1}, g_{2}, g_{3}\right)$.

Now we prove that if $n \geq 6, A_{n}$ is simple. We assume that A_{n-1} is simple. Note that A_{n-1} is the stabilizer of n via the standard action of A_{n}. Since the action of A_{n} is doubly transitive, it is primitive, so there is no subgroup strictly between A_{n-1} and A_{n}. Suppose that N were a nontrivial proper normal subgroup of A_{n}. Since A_{n-1} is maximal maximal, it cannot be the case that $A_{n-1} \subseteq N$ (equality is impossible because A_{n-1} is not normal). Then $N \cap A_{n-1}$ is a proper normal subgroup of A_{n-1}. Since A_{n-1} is simple, $N \cap A_{n-1}=\{e\}$. Since $N A_{n-1}$ is a subgroup of A_{n} containing A_{n-1} and hence is all of A_{n}. Since $N \cap A_{n-1}=\{e\}, N$ has order n, and A_{n} is the semidirect product of N and A_{n-1} with respect to some homomorphism $\alpha: A_{n-1} \rightarrow \operatorname{Aut}(N)$. This homomorphism can't be tivial, since A_{n-1} is not normal. By the simplicty of A_{n-1}, the kernel of α is trivial. But then the imageof $\operatorname{Aut}(N)$ in $S_{N^{*}}$ would contain a subgroup of index 2 , necessarily the alternating group, which we saw is impossible when $n \geq 5$.

