The simplicity of the alternating groups

September 16, 2010

Theorem 0.1 If $n \ge 5$, the alternating group A_n is simple.

Proof: We proved that A_5 is simple by computing its conjugacy classes. We continue by induction.

Lemma 0.2 Let A be a set with n elements. Then the action of S_A on A is m-fold transitive for all $m \leq n$, and the action of A_A on A is m-fold transitive for all $m \leq n-2$.

Proof: Suppose that $1 \leq m \leq n$ and (a_1, \ldots, a_m) and (b_1, \ldots, b_m) are injective sequences in A. There is evidently an element σ of S_A taking each a_i to b_i . This shows that the action of S_A is *m*-fold transitive. Now if $m \leq n-2$ and the σ chosen above is not in A_A , there at least two elements, say c_1 and c_2 , in $\{1, \ldots, n\}$ which are not equal to any of the b_i 's. Then the $\sigma' := (c_1 c_2) \sigma$ is in A_A and has the same effect on the a_i 's as does σ . \Box

It follows from this that if $n \ge 3$, the standard action of A_n is transitive, and if $n \ge 4$, it is doubly transitive, hence primitive.

Corollary 0.3 Let G be a group of order n and let $G^* := G \setminus \{e\}$. The action of Aut(G) leaves G^* invariant and thus there is an injective group homomorphism $Aut(G) \to S_{G^*}$. If $n \geq 5$, the image of this map cannot contain all of A_{G^*} .

(Remark: if $G = \mu_2 \times \mu_2$, its autmorphism group is in fact all of S_{G^*}).

Proof: Say $n \geq 5$. Then A_{G^*} acts 3-fold transitively on G^* . Choose $g_1 \in G^*$ and then g_2 such that $g_2 \neq g_1, g_1^{-1}$. Note that there is at least one more element g_3 in G^* with $g_3 \neq g_1, g_2$ and $\neq g_1g_2$. Then no automorphism of G can map (g_1, g_2, g_1g_2) to (g_1, g_2, g_3) .

Now we prove that if $n \geq 6$, A_n is simple. We assume that A_{n-1} is simple. Note that A_{n-1} is the stabilizer of n via the standard action of A_n . Since the action of A_n is doubly transitive, it is primitive, so there is no subgroup strictly between A_{n-1} and A_n . Suppose that N were a nontrivial proper normal subgroup of A_n . Since A_{n-1} is maximal maximal, it cannot be the case that $A_{n-1} \subseteq N$ (equality is impossible because A_{n-1} is not normal). Then $N \cap A_{n-1}$ is a proper normal subgroup of A_{n-1} . Since A_{n-1} is simple, $N \cap A_{n-1} = \{e\}$. Since NA_{n-1} is a subgroup of A_n containing A_{n-1} and hence is all of A_n . Since $N \cap A_{n-1} = \{e\}$, N has order n, and A_n is the semidirect product of N and A_{n-1} with respect to some homomorphism $\alpha: A_{n-1} \to Aut(N)$. This homomorphism can't be tivial, since A_{n-1} is not normal. By the simplicity of A_{n-1} , the kernel of α is trivial. But then the image Aut(N) in S_{N^*} would contain a subgroup of index 2, necessarily the alternating group, which we saw is impossible when $n \geq 5$.