## Sets and Correspondences

## August 27, 2010

Let A and B be sets. A relation from A to B is a subset R of  $A \times B$ . It would appear more natural to say a relation "between A and B", but since the roles of A and B are not exactly the same, this is not quite as precise. Note that the sets A and B cannot be determined from R, so that, strictly speaking, it doesn't make sense to say that A is the "domain" of R or that B is the "codomain" of R. To remedy this, we make the following more formal definition.

**Definition** A correspondence is a triple (A, B, R), where A and B are sets and R is a relation from A to B. The domain of a correspondence (A, B, R) is A, the codomain of (A, B, R) is B, and the graph of (A, B, R) is R. One says that F := (A, B, R) is a correspondence from A to B, and writes symbolically:

 $F: A \circ \longrightarrow B.$ 

The relation R is called the graph of F and is often denoted by  $\Gamma_F$ .

If (A, B, R) is a correspondence from A to B and (B, C, S) is a correspondence from B to C, then one defines a new correspondence (A, C, T) from A to C by setting

 $T := S \circ R := \{(a, c) : \text{there exists some } b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}.$ 

This new correspondence is called the *composition* of F and G. If F := (A, B, R) and G := (B, C, S), then the composition of F and G is usually

denoted by  $G \circ F$  and by a diagram of the form:



This diagram is *commutative*, meaning that the correspondence from A to C is indeed the composite of the correspondence from A to B with the correspondence from B to C.

The *image* of a correspondence  $F: A \circ \longrightarrow B$  is the set of  $b \in B$  such that there exists an  $a \in A$  such that  $(a, b) \in \Gamma_F$ . There is no commonly used term for the dual notion, that is the set of  $a \in A$  such that there exists a  $b \in B$ such that  $(a, b) \in \Gamma_F$ .

## Examples and Exercises:

- If  $f := (A, B, R): A \circ \rightarrow B$ , then  $f^t$  (sometimes written  $f^{-1}$ ) is  $(B, A, R^t)$ , where  $R^t := \{(b, a) : (a, b) \in R\}$ .
- Show that  $f^{t^t} = f$  and that  $(f \circ g)^t = g^t \circ f^t$ .
- The empty correspondence  $e_{A,B}$  from A to B is  $(A, B, \emptyset)$ .
- The full correspondence from  $f_{A,B} A$  to B is  $(A, B, A \times B)$ .
- The identity correspondence  $id_A$  from A to A is  $(A, A, \Delta_A)$ , where  $\Delta_A := \{(a, a) : a \in A\}$  (the diagonal or identity relation on A).
- Show that if f, g, and h are correspondences such that  $g \circ f$  and  $h \circ g$  are defined, then  $h \circ (g \circ f)$  and  $(h \circ g) \circ f$  are both defined and are equal.
- Show that if  $f: A \circ \longrightarrow B$ , then  $id_B \circ f = f$  and that  $f \circ id_A = f$ .
- If  $f: A \circ \longrightarrow B$ , compute  $e_{B,C} \circ f$  and  $f_{B,C} \circ f$ , and similarly on the other side. (Note: see a few lines above for the notation.)

## **Terminology:**

- A correspondence  $F: A \circ \longrightarrow B$  is called a *function* if for every  $a \in A$ , there is exactly one  $b \in \Gamma_F$  such that  $(a, b) \in \Gamma_F$ . In this case one writes F(a) for b and  $F: A \longrightarrow B$  instead of  $F: \circ \longrightarrow B$ .
- A relation  $R \subset A \times A$  is called *transitive* if  $R \circ R \subseteq R$ .
- A relation  $R \subseteq A \times A$  is called a *preorder* if it is transitive and  $\Delta_A \subseteq R$ .
- A relation  $R \subseteq A \times A$  is called an equivalence relation if it is a preorder and also  $F = F^t$ .
- A partition of a set A is a set  $\Pi$  of nonempty subsets of A such that each element of A is contained in exactly one element of P. Review the fact that there is a bijection between partitions of A and equivalence relations on A.