Sets and Correspondences

August 27, 2010

Let A and B be sets. A relation from A to B is a subset R of $A \times B$. It would appear more natural to say a relation "between A and B ", but since the roles of A and B are not exactly the same, this is not quite as precise. Note that the sets A and B cannot be determined from R, so that, strictly speaking, it doesn't make sense to say that A is the "domain" of R or that B is the "codomain" of R. To remedy this, we make the following more formal definition.

Definition A correspondence is a triple (A, B, R), where A and B are sets and R is a relation from A to B. The domain of a correspondence (A, B, R) is A, the codomain of (A, B, R) is B, and the graph of (A, B, R) is R. One says that $F:=(A, B, R)$ is a correspondence from A to B, and writes symbolically:

$$
F: A \circ \longrightarrow B
$$

The relation R is called the graph of F and is often denoted by Γ_{F}.
If (A, B, R) is a correspondence from A to B and (B, C, S) is a correspondence from B to C, then one defines a new correspondence (A, C, T) from A to C by setting
$T:=S \circ R:=\{(a, c):$ there exists some $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S\}$.
This new correspondence is called the composition of F and G. If $F:=$ (A, B, R) and $G:=(B, C, S)$, then the composition of F and G is usually
denoted by $G \circ F$ and by a diagram of the form:

This diagram is commutative, meaning that the correspondence from A to C is indeed the composite of the correspondence from A to B with the correspondence from B to C.

The image of a correspondence $F: A \circ \longrightarrow B$ is the set of $b \in B$ such that there exists an $a \in A$ such that $(a, b) \in \Gamma_{F}$. There is no commonly used term for the dual notion, that is the set of $a \in A$ such that there exists a $b \in B$ such that $(a, b) \in \Gamma_{F}$.

Examples and Exercises:

- If $f:=(A, B, R): A \circ \longrightarrow B$, then f^{t} (sometimes written f^{-1}) is $\left(B, A, R^{t}\right)$, where $R^{t}:=\{(b, a):(a, b) \in R\}$.
- Show that $f^{t t}=f$ and that $(f \circ g)^{t}=g^{t} \circ f^{t}$.
- The empty correspondence $e_{A, B}$ from A to B is (A, B, \emptyset).
- The full correspondence from $f_{A, B} A$ to B is $(A, B, A \times B)$.
- The identity correspondence id_{A} from A to A is $\left(A, A, \Delta_{A}\right)$, where $\Delta_{A}:=\{(a, a): a \in A\}$ (the diagonal or identity relation on A).
- Show that if f, g, and h are correspondences such that $g \circ f$ and $h \circ g$ are defined, then $h \circ(g \circ f)$ and $(h \circ g) \circ f$ are both defined and are equal.
- Show that if $f: A \circ \longrightarrow B$, then $\operatorname{id}_{B} \circ f=f$ and that $f \circ \mathrm{id}_{A}=f$.
- If $f: A \circ \longrightarrow B$, compute $e_{B, C} \circ f$ and $f_{B, C} \circ f$, and similarly on the other side. (Note: see a few lines above for the notation.)

Terminology:

- A correspondence $F: A \circ \longrightarrow B$ is called a function if for every $a \in A$, there is exactly one $b \in \Gamma_{F}$ such that $(a, b) \in \Gamma_{F}$. In this case one writes $F(a)$ for b and $F: A \longrightarrow B$ instead of $F: \circ \longrightarrow B$.
- A relation $R \subset A \times A$ is called transitive if $R \circ R \subseteq R$.
- A relation $R \subseteq A \times A$ is called a preorder if it is transitive and $\Delta_{A} \subseteq R$.
- A relation $R \subseteq A \times A$ is called an equivalence relation if it is a preorder and also $F=F^{t}$.
- A partition of a set A is a set Π of nonempty subsets of A such that each element of A is contained in exactly one element of P. Review the fact that there is a bijection between partitions of A and equivalence relations on A.

